185 research outputs found

    Dynamics and control of a class of underactuated mechanical systems

    Get PDF
    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized by nonintegrable dynamics relations is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the results; these examples are of underactuated mechanical systems that are not linearly controllable or smoothly stabilizable

    Robust Consensus of Second-Order Heterogeneous Multi-Agent Systems via Dynamic Interaction

    Get PDF
    A consensus problem is proposed for second-order multi-agent systems with heterogeneous mass distribution. The motivation of this work is mainly related to spacecraft attitude coordinated control, in which gyroless configuration is considered, to avoid drift errors and design of estimation filters. The considered spacecraft includes flexible modes and coupling between the rigid and flexible dynamics. Dynamic interaction between the agents is considered. Moreover, the achievement of the consensus and robust stabilization are shown for coordinated heterogeneous multi-agent systems, for undirected and connected graph topology. Finally, the effectiveness of the proposed controller is shown for a precise pointing mission of the Crab Nebula

    An Event-Triggered Robust Attitude Control of Flexible Spacecraft With Modified Rodrigues Parameters Under Limited Communication

    Get PDF
    The attitude regulation of spacecraft using continuous time execution of the control law is not always affordable for the low-cost satellites with limited wireless resources. Of late, within the ambit of control of systems over networks, event-triggered control has proved to be instrumental in ensuring acceptable closed-loop performance while respecting bandwidth constraints of the underlying network. Aligned with these design objectives, a robust event-triggered attitude control algorithm is proposed to regulate the orientation of a flexible spacecraft subjected to parametric uncertainties, external disturbances, and vibrations due to flexible appendages. The control law is developed using a state-dependent single feedback vector, which further assists in obeying the constrained network. The current information of this vector is updated to the onboard controller only when the predefined triggering condition is satisfied. Thus, the control input is updated through communication channel only when there is a need, which ultimately helps in saving the communication resources. The system trajectories, under the proposed approach, are guaranteed to be uniformly ultimately bounded (UUB) in a small neighborhood of origin by using a high gain. Moreover, the practical applicability of the proposed scheme is also proved by showing the Zeno free behavior in the proposed control, i.e., it avoids the accumulation of the triggering sequence. The numerical simulations results are indeed encouraging and illustrate the effectiveness of the designed controller. Moreover, the numerical comparative analysis shows that the proposed approach performs better than periodically sampled data technique and sliding mode-based event-triggered technique.Qatar UniversityScopu

    Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Get PDF
    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM)

    Avionics/Control co-design for large flexible space structures

    Get PDF
    In this paper, a multi-model H1 synthesis scheme for fixed-structure controller design is developed and applied to the attitude control of a highly flexible earth-observation satellite. The particularity of the proposed approach is that the decision variables optimized by the fixed-structure Hinfinity solver include the structured controller parameters but also some parameters which characterize the avionics. Furthermore the proposed control scheme can be very easily adapted to a new configuration of sensors and thus can handle gyro or gyroless configurations. This way, various avionics configurations can be easily evaluated. The avionics characteristics for a given configuration and the control law can be simultaneously optimized avoiding time-consuming iterations between the definition of avionics and the design of the controller on the basis of the current avionics. The approach is applied on a earth observation satellite for two different study cases. The first one aims to design an improved controller in order to meet the nominal requirements with a poor avionics. The second ones aims to find a controller and an improved avionics to meet very challenging requirements

    Robust Active Mirror Control Based on Hybrid Sensing for Spacecraft Line-of-Sight Stabilization

    Get PDF
    Modern space-observation missions demand stringent pointing requirements that motivated a significant amount of research on the topic of microvibration isolation and line-of-sight stabilization systems. While disturbances can be reduced by mounting some of the noisy equipment on various isolation platforms, residual vibrations can still propagate through and be amplified by the flexible structure of the spacecraft. In order to alleviate these issues, the line of sight must also be actively controlled at the payload level. However, such systems typically have to rely solely on low-frequency sensors based on image processing algorithms. The goal of this article is to present a model-based control methodology that can increase the bandwidth of such systems by making use of additional rate sensors mounted on the main disturbance elements impacting the optical path. Following a comprehensive model identification and uncertainty quantification part, the robust control strategy is designed to account for plant uncertainty and provide formal worst case performance guarantees. Excellent agreement between theoretical prediction and experimental results are obtained on a test bench developed at the European Space Agency

    Modeling & control of a space robot for active debris removal

    Get PDF
    Space access and satellites lifespan are increasingly threatened by the great amount of debris in Low Earth Orbits (LEO). Among the many solutions proposed in the literature so far, the emphasis is put here on a robotic arm mounted on a satellite to capture massive debris, such as dead satellites or launch vehicle upper stages. The modeling and control of such systems are investigated throughout the paper. Dynamic models rely on an adapted Newton-Euler algorithm, and control algorithms are based on the recent structured H infinity method. The main goal is to efficiently track a target point on the debris while using simple PD-like controllers to reduce computational burden. The structured H infinity framework proves to be a suitable tool to design a reduced-order robust controller that catches up with external disturbances and is simultaneously compatible with current space processors capacities

    Efficient Reorientation Maneuvers for Spacecraft with Multiple Articulated Payloads

    Get PDF
    A final report is provided which describes the research program during the period 3 Mar. 1992 to 3 Jun. 1993. A summary of the technical research questions that were studied and of the main results that were obtained is given. The specific outcomes of the research program, including both educational impacts as well as research publications, are listed. The research is concerned with efficient reorientation maneuvers for spacecraft with multiple articulated payloads
    corecore