164 research outputs found

    Optimization and Applications

    Get PDF
    Proceedings of a workshop devoted to optimization problems, their theory and resolution, and above all applications of them. The topics covered existence and stability of solutions; design, analysis, development and implementation of algorithms; applications in mechanics, telecommunications, medicine, operations research

    Solving variational inequalities and cone complementarity problems in nonsmooth dynamics using the alternating direction method of multipliers

    Get PDF
    This work presents a numerical method for the solution of variational inequalities arising in nonsmooth flexible multibody problems that involve set-valued forces. For the special case of hard frictional contacts, the method solves a second order cone complementarity problem. We ground our algorithm on the Alternating Direction Method of Multipliers (ADMM), an efficient and robust optimization method that draws on few computational primitives. In order to improve computational performance, we reformulated the original ADMM scheme in order to exploit the sparsity of constraint jacobians and we added optimizations such as warm starting and adaptive step scaling. The proposed method can be used in scenarios that pose major difficulties to other methods available in literature for complementarity in contact dynamics, namely when using very stiff finite elements and when simulating articulated mechanisms with odd mass ratios. The method can have applications in the fields of robotics, vehicle dynamics, virtual reality, and multiphysics simulation in general

    Second-order Sensitivity Computation

    Get PDF

    Some results on optimal control with unilateral state constraints

    Get PDF
    International audienceIn this paper, we study the problem of quadratic optimal control with state variables unilateral constraints, for linear time-invariant systems. The necessary conditions are formulated as a linear invariant system with complementary slackness conditions. Some structural properties of this system are examined. Then it is shown that the problem can benefit from the higher order Moreau's sweeping process, that is, a specific distributional differential inclusion, and from ten Dam's geometric theory [A.A. ten Dam, K.F. Dwarshuis, J.C. Willems, The contact problem for linear continuous-time dynamical systems: A geometric approach, IEEE Trans. Automat. Control 42 (4) (1997) 458–472; A.A. ten Dam, Unilaterally Constrained Dynamical Systems, Ph.D. Thesis, Rijsuniversiteit Groningen, NL, available at http://irs.ub.rug.nl/ppn/159407869, 1997] for partitioning of the admissible domain boundary (in particular for the case of multivariable systems). In fact, the first step may be also seen as follows: does the higher order Moreau's sweeping process (developed in Acary et al. [V. Acary, B. Brogliato, D. Goeleven, Higher order Moreau's sweeping process: Mathematical formulation and numerical simulation, Math. Programm. A 113 (2008) 133–217]) correspond to the necessary conditions of some optimal control problem with an extended integral action? The knowledge of the qualitative behaviour of optimal trajectories at junction times is improved with the approach, which also paves the way towards efficient time-stepping numerical algorithms to solve the optimal control boundary value problem

    A contact-implicit direct trajectory optimization scheme for the study of legged maneuverability

    Get PDF
    For legged robots to move safely in unpredictable environments, they need to be manoeuvrable, but transient motions such as acceleration, deceleration and turning have been the subject of little research compared to constant-speed gait. They are difficult to study for two reasons: firstly, the way they are executed is highly sensitive to factors such as morphology and traction, and secondly, they can potentially be dangerous, especially when executed rapidly, or from high speeds. These challenges make it an ideal topic for study by simulation, as this allows all variables to be precisely controlled, and puts no human, animal or robotic subjects at risk. Trajectory optimization is a promising method for simulating these manoeuvres, because it allows complete motion trajectories to be generated when neither the input actuation nor the output motion is known. Furthermore, it produces solutions that optimize a given objective, such as minimizing the distance required to stop, or the effort exerted by the actuators throughout the motion. It has consequently become a popular technique for high-level motion planning in robotics, and for studying locomotion in biomechanics. In this dissertation, we present a novel approach to studying motion with trajectory optimization, by viewing it more as “trajectory generation” – a means of generating large quantities of synthetic data that can illuminate the differences between successful and unsuccessful motion strategies when studied in aggregate. One distinctive feature of this approach is the focus on whole-body models, which capture the specific morphology of the subject, rather than the highly-simplified “template” models that are typically used. Another is the use of “contact-implicit” methods, which allow an appropriate footfall sequence to be discovered, rather than requiring that it be defined upfront. Although contact-implicit methods are not novel, they are not widely-used, as they are computationally demanding, and unnecessary when studying comparatively-predictable constant speed locomotion. The second section of this dissertation describes innovations in the formulation of these trajectory optimization problems as nonlinear programming problems (NLPs). This “direct” approach allows these problems to be solved by general-purpose, open-source algorithms, making it accessible to scientists without the specialized applied mathematics knowledge required to solve NLPs. The design of the NLP has a significant impact on the accuracy of the result, the quality of the solution (with respect to the final value of the objective function), and the time required to solve the proble

    Inverse truss design as a conic mathematical program with equilibrium constraints

    Get PDF
    • …
    corecore