935 research outputs found

    Tangential Extremal Principles for Finite and Infinite Systems of Sets, II: Applications to Semi-infinite and Multiobjective Optimization

    Get PDF
    This paper contains selected applications of the new tangential extremal principles and related results developed in Part I to calculus rules for infinite intersections of sets and optimality conditions for problems of semi-infinite programming and multiobjective optimization with countable constraint

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Variational Analysis in Semi-Infinite and Infinite Programming, II: Necessary Optimality Conditions

    Get PDF
    This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to problems of semi-infinite and infinite programming with feasible solution sets defined by parameterized systems of infinitely many linear inequalities of the type intensively studied in the preceding development [5] from our viewpoint of robust Lipschitzian stability. We present meaningful interpretations and practical examples of such models. The main results establish necessary optimality conditions for a broad class of semi-infinite and infinite programs, where objectives are generally described by nonsmooth and nonconvex functions on Banach spaces and where infinite constraint inequality systems are indexed by arbitrary sets. The results obtained are new in both smooth and nonsmooth settings of semi-infinite and infinite programming

    Constraint Qualifications and Optimality Conditions for Nonconvex Semi-Infinite and Infinite Programs

    Get PDF
    The paper concerns the study of new classes of nonlinear and nonconvex optimization problems of the so-called infinite programming that are generally defined on infinite-dimensional spaces of decision variables and contain infinitely many of equality and inequality constraints with arbitrary (may not be compact) index sets. These problems reduce to semi-infinite programs in the case of finite-dimensional spaces of decision variables. We extend the classical Mangasarian-Fromovitz and Farkas-Minkowski constraint qualifications to such infinite and semi-infinite programs. The new qualification conditions are used for efficient computing the appropriate normal cones to sets of feasible solutions for these programs by employing advanced tools of variational analysis and generalized differentiation. In the further development we derive first-order necessary optimality conditions for infinite and semi-infinite programs, which are new in both finite-dimensional and infinite-dimensional settings.Comment: 28 page

    Tangential Extremal Principles for Finite and Infinite Systems of Sets, I: Basic Theory

    Get PDF
    In this paper we develop new extremal principles in variational analysis that deal with finite and infinite systems of convex and nonconvex sets. The results obtained, unified under the name of tangential extremal principles, combine primal and dual approaches to the study of variational systems being in fact first extremal principles applied to infinite systems of sets. The first part of the paper concerns the basic theory of tangential extremal principles while the second part presents applications to problems of semi-infinite programming and multiobjective optimization

    DC Semidefinite Programming and Cone Constrained DC Optimization

    Full text link
    In the first part of this paper we discuss possible extensions of the main ideas and results of constrained DC optimization to the case of nonlinear semidefinite programming problems (i.e. problems with matrix constraints). To this end, we analyse two different approaches to the definition of DC matrix-valued functions (namely, order-theoretic and componentwise), study some properties of convex and DC matrix-valued functions and demonstrate how to compute DC decompositions of some nonlinear semidefinite constraints appearing in applications. We also compute a DC decomposition of the maximal eigenvalue of a DC matrix-valued function, which can be used to reformulate DC semidefinite constraints as DC inequality constrains. In the second part of the paper, we develop a general theory of cone constrained DC optimization problems. Namely, we obtain local optimality conditions for such problems and study an extension of the DC algorithm (the convex-concave procedure) to the case of general cone constrained DC optimization problems. We analyse a global convergence of this method and present a detailed study of a version of the DCA utilising exact penalty functions. In particular, we provide two types of sufficient conditions for the convergence of this method to a feasible and critical point of a cone constrained DC optimization problem from an infeasible starting point
    corecore