18 research outputs found

    Nonrepetitive colorings of lexicographic product of graphs

    Get PDF
    A coloring cc of the vertices of a graph GG is nonrepetitive if there exists no path v1v2…v2lv_1v_2\ldots v_{2l} for which c(vi)=c(vl+i)c(v_i)=c(v_{l+i}) for all 1≤i≤l1\le i\le l. Given graphs GG and HH with ∣V(H)∣=k|V(H)|=k, the lexicographic product G[H]G[H] is the graph obtained by substituting every vertex of GG by a copy of HH, and every edge of GG by a copy of Kk,kK_{k,k}. %Our main results are the following. We prove that for a sufficiently long path PP, a nonrepetitive coloring of P[Kk]P[K_k] needs at least 3k+⌊k/2⌋3k+\lfloor k/2\rfloor colors. If k>2k>2 then we need exactly 2k+12k+1 colors to nonrepetitively color P[Ek]P[E_k], where EkE_k is the empty graph on kk vertices. If we further require that every copy of EkE_k be rainbow-colored and the path PP is sufficiently long, then the smallest number of colors needed for P[Ek]P[E_k] is at least 3k+13k+1 and at most 3k+⌈k/2⌉3k+\lceil k/2\rceil. Finally, we define fractional nonrepetitive colorings of graphs and consider the connections between this notion and the above results

    Nonrepetitive colorings of lexicographic product of paths and other graphs

    Get PDF
    A coloring cc of the vertices of a graph GG is nonrepetitive if there exists no path v1v2…v2lv_1v_2\ldots v_{2l} for which c(vi)=c(vl+i)c(v_i)=c(v_{l+i}) for all 1≤i≤l1\le i\le l. Given graphs GG and HH with ∣V(H)∣=k|V(H)|=k, the lexicographic product G[H]G[H] is the graph obtained by substituting every vertex of GG by a copy of HH, and every edge of GG by a copy of Kk,kK_{k,k}. We prove that for a sufficiently long path PP, a nonrepetitive coloring of P[Kk]P[K_k] needs at least 3k+⌊k/2⌋3k+\lfloor k/2\rfloor colors. If k>2k>2 then we need exactly 2k+12k+1 colors to nonrepetitively color P[Ek]P[E_k], where EkE_k is the empty graph on kk vertices. If we further require that every copy of EkE_k be rainbow-colored and the path PP is sufficiently long, then the smallest number of colors needed for P[Ek]P[E_k] is at least 3k+13k+1 and at most 3k+⌈k/2⌉3k+\lceil k/2\rceil. Finally, we define fractional nonrepetitive colorings of graphs and consider the connections between this notion and the above results

    A note on the Thue chromatic number of lexicographic products of graphs

    Get PDF
    A sequence is called non-repetitive if none of its subsequences forms a repetition (a sequence r1r2 · · · r2n such that ri = rn+i for all 1 ≤ i ≤ n). Let G be a graph whose vertices are coloured. A colouring ϕ of the graph G is non-repetitive if the sequence of colours on every path in G is non-repetitive. The Thue chromatic number, denoted by π(G), is the minimum number of colours of a non-repetitive colouring of G

    Planar graphs have bounded nonrepetitive chromatic number

    Get PDF
    A colouring of a graph isnonrepetitiveif for every path of even order, thesequence of colours on the first half of the path is different from the sequence of colours onthe second half. We show that planar graphs have nonrepetitive colourings with a boundednumber of colours, thus proving a conjecture of Alon, Grytczuk, Hałuszczak and Riordan(2002). We also generalise this result for graphs of bounded Euler genus, graphs excluding afixed minor, and graphs excluding a fixed topological minor
    corecore