30 research outputs found

    New Bounds for Facial Nonrepetitive Colouring

    Full text link
    We prove that the facial nonrepetitive chromatic number of any outerplanar graph is at most 11 and of any planar graph is at most 22.Comment: 16 pages, 5 figure

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound

    Vertex coloring of plane graphs with nonrepetitive boundary paths

    Full text link
    A sequence s1,s2,...,sk,s1,s2,...,sks_1,s_2,...,s_k,s_1,s_2,...,s_k is a repetition. A sequence SS is nonrepetitive, if no subsequence of consecutive terms of SS form a repetition. Let GG be a vertex colored graph. A path of GG is nonrepetitive, if the sequence of colors on its vertices is nonrepetitive. If GG is a plane graph, then a facial nonrepetitive vertex coloring of GG is a vertex coloring such that any facial path is nonrepetitive. Let πf(G)\pi_f(G) denote the minimum number of colors of a facial nonrepetitive vertex coloring of GG. Jendro\vl and Harant posed a conjecture that πf(G)\pi_f(G) can be bounded from above by a constant. We prove that πf(G)24\pi_f(G)\le 24 for any plane graph GG

    On the facial Thue choice index via entropy compression

    Full text link
    A sequence is nonrepetitive if it contains no identical consecutive subsequences. An edge colouring of a path is nonrepetitive if the sequence of colours of its consecutive edges is nonrepetitive. By the celebrated construction of Thue, it is possible to generate nonrepetitive edge colourings for arbitrarily long paths using only three colours. A recent generalization of this concept implies that we may obtain such colourings even if we are forced to choose edge colours from any sequence of lists of size 4 (while sufficiency of lists of size 3 remains an open problem). As an extension of these basic ideas, Havet, Jendrol', Sot\'ak and \v{S}krabul'\'akov\'a proved that for each plane graph, 8 colours are sufficient to provide an edge colouring so that every facial path is nonrepetitively coloured. In this paper we prove that the same is possible from lists, provided that these have size at least 12. We thus improve the previous bound of 291 (proved by means of the Lov\'asz Local Lemma). Our approach is based on the Moser-Tardos entropy-compression method and its recent extensions by Grytczuk, Kozik and Micek, and by Dujmovi\'c, Joret, Kozik and Wood

    Planar graphs have bounded nonrepetitive chromatic number

    Get PDF
    A colouring of a graph isnonrepetitiveif for every path of even order, thesequence of colours on the first half of the path is different from the sequence of colours onthe second half. We show that planar graphs have nonrepetitive colourings with a boundednumber of colours, thus proving a conjecture of Alon, Grytczuk, Hałuszczak and Riordan(2002). We also generalise this result for graphs of bounded Euler genus, graphs excluding afixed minor, and graphs excluding a fixed topological minor

    A new approach to nonrepetitive sequences

    Full text link
    A sequence is nonrepetitive if it does not contain two adjacent identical blocks. The remarkable construction of Thue asserts that 3 symbols are enough to build an arbitrarily long nonrepetitive sequence. It is still not settled whether the following extension holds: for every sequence of 3-element sets L1,...,LnL_1,..., L_n there exists a nonrepetitive sequence s1,...,sns_1, ..., s_n with siLis_i\in L_i. Applying the probabilistic method one can prove that this is true for sufficiently large sets LiL_i. We present an elementary proof that sets of size 4 suffice (confirming the best known bound). The argument is a simple counting with Catalan numbers involved. Our approach is inspired by a new algorithmic proof of the Lov\'{a}sz Local Lemma due to Moser and Tardos and its interpretations by Fortnow and Tao. The presented method has further applications to nonrepetitive games and nonrepetitive colorings of graphs.Comment: 5 pages, no figures.arXiv admin note: substantial text overlap with arXiv:1103.381

    Pathwidth and nonrepetitive list coloring

    Full text link
    A vertex coloring of a graph is nonrepetitive if there is no path in the graph whose first half receives the same sequence of colors as the second half. While every tree can be nonrepetitively colored with a bounded number of colors (4 colors is enough), Fiorenzi, Ochem, Ossona de Mendez, and Zhu recently showed that this does not extend to the list version of the problem, that is, for every 1\ell \geq 1 there is a tree that is not nonrepetitively \ell-choosable. In this paper we prove the following positive result, which complements the result of Fiorenzi et al.: There exists a function ff such that every tree of pathwidth kk is nonrepetitively f(k)f(k)-choosable. We also show that such a property is specific to trees by constructing a family of pathwidth-2 graphs that are not nonrepetitively \ell-choosable for any fixed \ell.Comment: v2: Minor changes made following helpful comments by the referee
    corecore