6,874 research outputs found

    Gaussian process models for SCADA data based wind turbine performance/condition monitoring

    Get PDF
    Wind energy has seen remarkable growth in the past decade, and installed wind turbine capacity is increasing significantly every year around the globe. The presence of an excellent offshore wind resource and the need to reduce carbon emissions from electricity generation are driving policy to increase offshore wind generation capacity in UK waters. Logistic and transport issues make offshore maintenance costlier than onshore and availability correspondingly lower, and as a result, there is a growing interest in wind turbine condition monitoring allowing condition based, rather than corrective or scheduled, maintenance.;Offshore wind turbine manufacturers are constantly increasing the rated size the turbines, and also their hub height in order to access higher wind speeds with lower turbulence. However, such scaling up leads to significant increments in terms of materials for both tower structure and foundations, and also costs required for transportation, installation, and maintenance. Wind turbines are costly affairs that comprise several complex systems connected altogether (e.g., hub, drive shaft, gearbox, generator, yaw system, electric drive and so on).;The unexpected failure of these components can cause significant machine unavailability and/or damage to other components. This ultimately increases the operation and maintenance (O&M) cost and subsequently cost of energy (COE). Therefore, identifying faults at an early stage before catastrophic damage occurs is the primary objective associated with wind turbine condition monitoring.;Existing wind turbine condition monitoring strategies, for example, vibration signal analysis and oil debris detection, require costly sensors. The additional costs can be significant depending upon the number of wind turbines typically deployed in offshore wind farms and also, costly expertise is generally required to interpret the results. By contrast, Supervisory Control and Data Acquisition (SCADA) data analysis based condition monitoring could underpin condition based maintenance with little or no additional cost to the wind farm operator.;A Gaussian process (GP) is a stochastic, nonlinear and nonparametric model whose distribution function is the joint distribution of a collection of random variables; it is widely suitable for classification and regression problems. GP is a machine learning algorithm that uses a measure of similarity between subsequent data points (via covariance functions) to fit and or estimate the future value from a training dataset. GP models have been applied to numerous multivariate and multi-task problems including spatial and spatiotemporal contexts.;Furthermore, GP models have been applied to electricity price and residential probabilistic load forecasting, solar power forecasting. However, the application of GPs to wind turbine condition monitoring has to date been limited and not much explored.;This thesis focuses on GP based wind turbine condition monitoring that utilises data from SCADA systems exclusively. The selection of the covariance function greatly influences GP model accuracy. A comparative analysis of different covariance functions for GP models is presented with an in-depth analysis of popularly used stationary covariance functions. Based on this analysis, a suitable covariance function is selected for constructing a GP model-based fault detection algorithm for wind turbine condition monitoring.;By comparing incoming operational SCADA data, effective component condition indicators can be derived where the reference model is based on SCADA data from a healthy turbine constructed and compared against incoming data from a faulty turbine. In this thesis, a GP algorithm is constructed with suitable covariance function to detect incipient turbine operational faults or failures before they result in catastrophic damage so that preventative maintenance can be scheduled in a timely manner.;In order to judge GP model effectiveness, two other methods, based on binning, have been tested and compared with the GP based algorithm. This thesis also considers a range of critical turbine parameters and their impact on the GP fault detection algorithm.;Power is well known to be influenced by air density, and this is reflected in the IEC Standard air density correction procedure. Hence, the proper selection of an air density correction approach can improve the power curve model. This thesis addresses this, explores the different types of air density correction approach, and suggests the best way to incorporate these in the GP models to improve accuracy and reduce uncertainty.;Finally, a SCADA data based fault detection algorithm is constructed to detect failures caused by the yaw misalignment. Two fault detection algorithms based on IEC binning methods (widely used within the wind industry) are developed to assess the performance of the GP based fault detection algorithm in terms of their capability to detect in advance (and by how much) signs of failure, and also their false positive rate by making use of extensive SCADA data and turbine fault and repair logs.;GP models are robust in identifying early anomalies/failures that cause the wind turbine to underperform. This early detection is helpful in preventing machines to reach the catastrophic stage and allow enough time to undertake scheduled maintenance, which ultimately reduces the O&M, cost and maximises the power performance of wind turbines. Overall, results demonstrate the effectiveness of the GP algorithm in improving the performance of wind turbines through condition monitoring.Wind energy has seen remarkable growth in the past decade, and installed wind turbine capacity is increasing significantly every year around the globe. The presence of an excellent offshore wind resource and the need to reduce carbon emissions from electricity generation are driving policy to increase offshore wind generation capacity in UK waters. Logistic and transport issues make offshore maintenance costlier than onshore and availability correspondingly lower, and as a result, there is a growing interest in wind turbine condition monitoring allowing condition based, rather than corrective or scheduled, maintenance.;Offshore wind turbine manufacturers are constantly increasing the rated size the turbines, and also their hub height in order to access higher wind speeds with lower turbulence. However, such scaling up leads to significant increments in terms of materials for both tower structure and foundations, and also costs required for transportation, installation, and maintenance. Wind turbines are costly affairs that comprise several complex systems connected altogether (e.g., hub, drive shaft, gearbox, generator, yaw system, electric drive and so on).;The unexpected failure of these components can cause significant machine unavailability and/or damage to other components. This ultimately increases the operation and maintenance (O&M) cost and subsequently cost of energy (COE). Therefore, identifying faults at an early stage before catastrophic damage occurs is the primary objective associated with wind turbine condition monitoring.;Existing wind turbine condition monitoring strategies, for example, vibration signal analysis and oil debris detection, require costly sensors. The additional costs can be significant depending upon the number of wind turbines typically deployed in offshore wind farms and also, costly expertise is generally required to interpret the results. By contrast, Supervisory Control and Data Acquisition (SCADA) data analysis based condition monitoring could underpin condition based maintenance with little or no additional cost to the wind farm operator.;A Gaussian process (GP) is a stochastic, nonlinear and nonparametric model whose distribution function is the joint distribution of a collection of random variables; it is widely suitable for classification and regression problems. GP is a machine learning algorithm that uses a measure of similarity between subsequent data points (via covariance functions) to fit and or estimate the future value from a training dataset. GP models have been applied to numerous multivariate and multi-task problems including spatial and spatiotemporal contexts.;Furthermore, GP models have been applied to electricity price and residential probabilistic load forecasting, solar power forecasting. However, the application of GPs to wind turbine condition monitoring has to date been limited and not much explored.;This thesis focuses on GP based wind turbine condition monitoring that utilises data from SCADA systems exclusively. The selection of the covariance function greatly influences GP model accuracy. A comparative analysis of different covariance functions for GP models is presented with an in-depth analysis of popularly used stationary covariance functions. Based on this analysis, a suitable covariance function is selected for constructing a GP model-based fault detection algorithm for wind turbine condition monitoring.;By comparing incoming operational SCADA data, effective component condition indicators can be derived where the reference model is based on SCADA data from a healthy turbine constructed and compared against incoming data from a faulty turbine. In this thesis, a GP algorithm is constructed with suitable covariance function to detect incipient turbine operational faults or failures before they result in catastrophic damage so that preventative maintenance can be scheduled in a timely manner.;In order to judge GP model effectiveness, two other methods, based on binning, have been tested and compared with the GP based algorithm. This thesis also considers a range of critical turbine parameters and their impact on the GP fault detection algorithm.;Power is well known to be influenced by air density, and this is reflected in the IEC Standard air density correction procedure. Hence, the proper selection of an air density correction approach can improve the power curve model. This thesis addresses this, explores the different types of air density correction approach, and suggests the best way to incorporate these in the GP models to improve accuracy and reduce uncertainty.;Finally, a SCADA data based fault detection algorithm is constructed to detect failures caused by the yaw misalignment. Two fault detection algorithms based on IEC binning methods (widely used within the wind industry) are developed to assess the performance of the GP based fault detection algorithm in terms of their capability to detect in advance (and by how much) signs of failure, and also their false positive rate by making use of extensive SCADA data and turbine fault and repair logs.;GP models are robust in identifying early anomalies/failures that cause the wind turbine to underperform. This early detection is helpful in preventing machines to reach the catastrophic stage and allow enough time to undertake scheduled maintenance, which ultimately reduces the O&M, cost and maximises the power performance of wind turbines. Overall, results demonstrate the effectiveness of the GP algorithm in improving the performance of wind turbines through condition monitoring

    Data-driven nonparametric Li-ion battery ageing model aiming at learningfrom real operation data – Part A: Storage operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing. In a series of two papers, a data-driven ageing model is developed for Li-ion batteries under the Gaussian Process framework. A special emphasis is placed on illustrating the ability of the Gaussian Process model to learn from new data observations, providing more accurate and confident predictions, and extending the operating window of the model. This first paper focusses on the systematic modelling and experimental verification of cell degradation through calendar ageing. A specific covariance function is composed, tailored for use in a battery ageing application. Over an extensive dataset involving 32 cells tested during more than three years, different training possibilities are contemplated in order to quantify the minimal number of laboratory tests required for the design of an accurate ageing model. A model trained with only 18 tested cells achieves an overall mean-absolute-error of 0.53% in the capacity curves prediction, after being validated under a broad window of both dynamic and static temperature and SOC storage conditions.This investigation work was financially supported by ELKARTEK (CICe2018 -Desarrollo de actividades de investigacion fundamental estrategica en almacenamiento de energia electroquimica y termica para sistemas de almacenamiento hibridos, KK-2018/00098) and EMAITEK Strategic Programs of the Basque Government. In addition, the research was undertaken as a part of ELEVATE project (EP/M009394/1) funded by the Engineering and Physical Sciences Research Council (EPSRC) and partnership with the WMG High Value Manufacturing (HVM) Catapult. Authors would like to thank the FP7 European project Batteries 2020 consortium (grant agreement No. 608936) for the valuable battery ageing data provided during the course of the project

    Volatility forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly. JEL Klassifikation: C10, C53, G1

    Bayesian Network Approach to Assessing System Reliability for Improving System Design and Optimizing System Maintenance

    Get PDF
    abstract: A quantitative analysis of a system that has a complex reliability structure always involves considerable challenges. This dissertation mainly addresses uncertainty in- herent in complicated reliability structures that may cause unexpected and undesired results. The reliability structure uncertainty cannot be handled by the traditional relia- bility analysis tools such as Fault Tree and Reliability Block Diagram due to their deterministic Boolean logic. Therefore, I employ Bayesian network that provides a flexible modeling method for building a multivariate distribution. By representing a system reliability structure as a joint distribution, the uncertainty and correlations existing between system’s elements can effectively be modeled in a probabilistic man- ner. This dissertation focuses on analyzing system reliability for the entire system life cycle, particularly, production stage and early design stages. In production stage, the research investigates a system that is continuously mon- itored by on-board sensors. With modeling the complex reliability structure by Bayesian network integrated with various stochastic processes, I propose several methodologies that evaluate system reliability on real-time basis and optimize main- tenance schedules. In early design stages, the research aims to predict system reliability based on the current system design and to improve the design if necessary. The three main challenges in this research are: 1) the lack of field failure data, 2) the complex reliability structure and 3) how to effectively improve the design. To tackle the difficulties, I present several modeling approaches using Bayesian inference and nonparametric Bayesian network where the system is explicitly analyzed through the sensitivity analysis. In addition, this modeling approach is enhanced by incorporating a temporal dimension. However, the nonparametric Bayesian network approach generally accompanies with high computational efforts, especially, when a complex and large system is modeled. To alleviate this computational burden, I also suggest to building a surrogate model with quantile regression. In summary, this dissertation studies and explores the use of Bayesian network in analyzing complex systems. All proposed methodologies are demonstrated by case studies.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Towards Handling Uncertainty in Prognostic Scenarios: Advanced Learning from the Past

    Get PDF
    In this report we introduce the paradigm of learning from the past which is realized in a controlled prognostic context. It is a data-driven exploratory approach to assessing the limits to credibility of any expectations about the system’s future behavior which are based on a time series of a historical observations of the analyzed system. This horizon of the credible expectations is derived as the length of explainable outreach of the data, that is, the spatio-temporal extent which, in lieu of the knowledge contained in the historical observations, we are justified in believing contains the system’s future observations. Explainable outreach is of practical interest to stakeholders since it allows them to assess the credibility of scenarios produced by models of the analyzed system. It also indicates the scale of measures required to overcome the system’s inertia. In this report we propose a method of learning in a controlled prognostic context which is based on a polynomial regression technique. A polynomial regression model is used to understand the system’s dynamics, revealed by the sample of historical observations, while the explainable outreach is constructed around the extrapolated regression function. The proposed learning method was tested on various sets of synthetic data in order to identify its strengths and weaknesses, and formulate guidelines for its practical application. We also demonstrate how it can be used in context of earth system sciences by using it to derive the explainable outreach of historical anthropogenic CO2 emissions and atmospheric CO2 concentrations. We conclude that the most robust method of building the explainable outreach is based on linear regression. However, the explainable outreach of the analyzed datasets (representing credible expectations based on extrapolation of the linear trend) is rather short

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3,4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.
    corecore