600 research outputs found

    The malaria system microApp: A new, mobile device-based tool for malaria diagnosis

    Get PDF
    Background: Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority. Objective: The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development. Methods: The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells. Results: As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly. Conclusions: Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment.Peer ReviewedPostprint (published version

    VAE with a VampPrior

    Get PDF
    Many different methods to train deep generative models have been introduced in the past. In this paper, we propose to extend the variational auto-encoder (VAE) framework with a new type of prior which we call "Variational Mixture of Posteriors" prior, or VampPrior for short. The VampPrior consists of a mixture distribution (e.g., a mixture of Gaussians) with components given by variational posteriors conditioned on learnable pseudo-inputs. We further extend this prior to a two layer hierarchical model and show that this architecture with a coupled prior and posterior, learns significantly better models. The model also avoids the usual local optima issues related to useless latent dimensions that plague VAEs. We provide empirical studies on six datasets, namely, static and binary MNIST, OMNIGLOT, Caltech 101 Silhouettes, Frey Faces and Histopathology patches, and show that applying the hierarchical VampPrior delivers state-of-the-art results on all datasets in the unsupervised permutation invariant setting and the best results or comparable to SOTA methods for the approach with convolutional networks.Comment: 16 pages, final version, AISTATS 201

    New Finger Biometric Method Using Near Infrared Imaging

    Get PDF
    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%

    OCR-directed evaluation of binarization techniques

    Full text link
    The objective of this work is to study different binarization methods and to investigate their effect on the performance of OCR systems. Two sets of document images and four OCR systems were used to study several binarization algorithms. The simplest method that chooses the median value of the gray levels, i.e., 127 from 256 levels, as the global threshold value did not work well unless the scanner characteristic matched with the nature of a collection of documents by chance. The best-fixed method uses the global threshold value that minimizes the number of overall errors for a combination of an OCR system and a collection of documents. Both Otsu\u27s global algorithm and Niblack\u27s local algorithm performed, on the average, as well as the best-fixed method for the test data sets. The ideal global threshold method selects the best global threshold value for each combination of a page and an OCR system. Although the ideal method outperformed, on the average, Niblack\u27s method, Niblack\u27s method processed some images better than the ideal method
    corecore