21 research outputs found

    Adaptive Signal Processing Techniques and Realistic Propagation Modeling for Multiantenna Vital Sign Estimation

    Get PDF
    Tämän työn keskeisimpänä tavoitteena on ihmisen elintoimintojen tarkkailu ja estimointi käyttäen radiotaajuisia mittauksia ja adaptiivisia signaalinkäsittelymenetelmiä monen vastaanottimen kantoaaltotutkalla. Työssä esitellään erilaisia adaptiivisia menetelmiä, joiden avulla hengityksen ja sydämen värähtelyn aiheuttamaa micro-Doppler vaihemodulaatiota sisältävät eri vastaanottimien signaalit voidaan yhdistää. Työssä johdetaan lisäksi realistinen malli radiosignaalien etenemiselle ja heijastushäviöille, jota käytettiin moniantennitutkan simuloinnissa esiteltyjen menetelmien vertailemiseksi. Saatujen tulosten perusteella voidaan osoittaa, että adaptiiviset menetelmät parantavat langattoman elintoimintojen estimoinnin luotettavuutta, ja mahdollistavat monitoroinnin myös pienillä signaali-kohinasuhteen arvoilla.This thesis addresses the problem of vital sign estimation through the use of adaptive signal enhancement techniques with multiantenna continuous wave radar. The use of different adaptive processing techniques is proposed in a novel approach to combine signals from multiple receivers carrying the information of the cardiopulmonary micro-Doppler effect caused by breathing and heartbeat. The results are based on extensive simulations using a realistic signal propagation model derived in the thesis. It is shown that these techniques provide a significant increase in vital sign rate estimation accuracy, and enable monitoring at lower SNR conditions

    Sensor Array Processing with Manifold Uncertainty

    Get PDF
    <p>The spatial spectrum, also known as a field directionality map, is a description of the spatial distribution of energy in a wavefield. By sampling the wavefield at discrete locations in space, an estimate of the spatial spectrum can be derived using basic wave propagation models. The observable data space corresponding to physically realizable source locations for a given array configuration is referred to as the array manifold. In this thesis, array manifold ambiguities for linear arrays of omni-directional sensors in non-dispersive fields are considered. </p><p>First, the problem of underwater a hydrophone array towed behind a maneuvering platform is considered. The array consists of many hydrophones mounted to a flexible cable that is pulled behind a ship. The towed cable will bend or distort as the ship performs maneuvers. The motion of the cable through the turn can be used to resolve ambiguities that are inherent to nominally linear arrays. The first significant contribution is a method to estimate the spatial spectrum using a time-varying array shape in a dynamic field and broadband temporal data. Knowledge of the temporal spectral shape is shown to enhance detection performance. The field is approximated as a sum of uncorrelated planewaves located at uniform locations in angle, forming a gridded map on which a maximum likelihood estimate for broadband source power is derived. Uniform linear arrays also suffer from spatial aliasing when the inter-element spacing exceeds a half-wavelength. Broadband temporal knowledge is shown to significantly reduce aliasing and thus, in simulation, enhance target detection in interference dominated environments. </p><p>As an extension, the problem of towed array shape estimation is considered when the number and location of sources are unknown. A maximum likelihood estimate of the array shape using the field directionality map is derived. An acoustic-based array shape estimate that exploits the full 360^\circ field via field directionality mapping is the second significant contribution. Towed hydrophone arrays have heading sensors in order to estimate array shape, but these sensors can malfunction during sharp turns. An array shape model is described that allows the heading sensor data to be statistically fused with heading sensor. The third significant contribution is method to exploit dynamical motion models for sharp turns for a robust array shape estimate that combines acoustic and heading data. The proposed array shape model works well for both acoustic and heading data and is valid for arbitrary continuous array shapes.</p><p>Finally, the problem of array manifold ambiguities for static under-sampled linear arrays is considered. Under-sampled arrays are non-uniformly sampled with average spacing greater than a half-wavelength. While spatial aliasing only occurs in uniformly sampled arrays with spacing greater than a half-wavelength, under-sampled arrays have increased spatial resolution at the cost of high sidelobes compared to half-wavelength sampled arrays with the same number of sensors. Additionally, non-uniformly sampled arrays suffer from rank deficient array manifolds that cause traditional subspace based techniques to fail. A class of fully agumentable arrays, minimally redundant linear arrays, is considered where the received data statistics of a uniformly spaced array of the same length can be reconstructed in wide sense stationary fields at the cost of increased variance. The forth significant contribution is a reduced rank processing method for fully augmentable arrays to reduce the variance from augmentation with limited snapshots. Array gain for reduced rank adaptive processing with diagonal loading for snapshot deficient scenarios is analytically derived using asymptotic results from random matrix theory for a set ratio of sensors to snapshots. Additionally, the problem of near-field sources is considered and a method to reduce the variance from augmentation is proposed. In simulation, these methods result in significant average and median array gains with limited snapshots.</p>Dissertatio

    High-resolution imaging methods in array signal processing

    Get PDF

    The hippocampus as an indexing machine of episodic memory

    Get PDF
    Episodic memories refer to our ability to encode and reinstate experiences. By extension, these memories shape how we view ourselves and the world around us. Despite this, little is known about how neurons in the hippocampus encode and retrieve new episodes. Here, I will demonstrate evidence for single neurons in the human hippocampus that code specific episodic memories (hence called Episode Specific Neurons), both through a rate code and a temporal code. Importantly, these neurons cannot be construed as coding for specific timepoints or concepts. Next, I will extend these findings to population activity in the local field potential. I report evidence for a reinstatement in high frequency power during successful memory processing that mirrors earlier findings in single neurons. Again, these results cannot be explained by activity induced by a content-code. Despite the undisputed importance of theta activity in memory processing, we find no consistent evidence of an increase in theta power during memory processing. Likewise, we find no evidence that earlier identified Episode Specific Neurons or other hippocampal neurons fire preferentially at a particular theta phases or theta phase offsets between encoding or retrieval of episodic memories. Lastly, I embed these findings in the broader literature, identify future experiments, and discuss possible translational applications

    UNSUPERVISED CLASSIFICATION OF HIGH-FREQUENCY OSCILLATIONS IN NEOCORTICAL EPILEPSY AND CONTROL PATIENTS

    Get PDF
    Quality of life for the more than 15 million people with drug-resistant epilepsy is tied to how precisely the brain areas responsible for generating their seizures can be localized. High-frequency (100-500 Hz) field-potential oscillations (HFOs) are emerging as a candidate biomarker for epileptogenic networks, but quantitative HFO studies are hampered by selection bias arising out of the need to reduce large volumes of data in the absence of capable automated processing methods. In this thesis, I introduce and evaluate an algorithm for the automatic detection and classification of HFOs that can be deployed without human intervention across long, continuous data records from large numbers of patients. I then use the algorithm in analyzing unique macro- and microelectrode intracranial electroencephalographic recordings from human neocortical epilepsy patients and controls. A central finding is that one class of HFOs discovered by the algorithm (median bandpassed spectral centroid ~140 Hz) is more prevalent in the seizure onset zone than outside. The outcomes of this work add to our understanding of epileptogenic networks and are suitable for near-term translation into improved surgical and device-based treatments

    Partially Constrained Adaptive Beamforming

    Get PDF
    The ReIterative Super-Resolution (RISR) was developed based on an iterative implementation of the Minimum Mean Squared Error (MMSE) estimator. Here, a novel approach to direction of arrival estimation, partially constrained beamforming is introduced by building from existing work on the RISR algorithm. First, RISR is rederived with the addition of a unity gain constraint, with the result denoted as Gain Constrained RISR (GC-RISR), though this formulation exhibits some loss in resolution. However, by taking advantage of the similar structure of RISR and GC-RISR, they can be combined using a geometric weighting term α\alpha to form a partially constrained version of RISR, which we denote as PC-RISR. Simulations are used to characterize PC-RISR's performance, where it is shown that the geometric weighting term can be used to control the speed of convergence. It is also demonstrated that this weighting term enables increased super-resolution capability compared to RISR, improves robustness to low sample support for super-resolving signals with low SNR, and the ability to detect signals with an SNR as low as -10dB given higher sample support

    On Detection and Ranking Methods for a Distributed Radio-Frequency Sensor Network: Theory and Algorithmic Implementation

    Get PDF
    A theoretical foundation for pre-detection fusion of sensors is needed if the United States Air Force is to ever field a system of distributed and layered sensors that can detect and perform parameter estimation of complex, extended targets in difficult interference environments, without human intervention, in near real-time. This research is relevant to the United States Air Force within its layered sensing and cognitive radar/sensor initiatives. The asymmetric threat of the twenty-first century introduces stressing sensing conditions that may exceed the ability of traditional monostatic sensing systems to perform their required intelligence, surveillance and reconnaissance missions. In particular, there is growing interest within the United States Air Force to move beyond single sensor sensing systems, and instead begin fielding and leveraging distributed sensing systems to overcome the inherent challenges imposed by the modern threat space. This thesis seeks to analyze the impact of integrating target echoes in the angular domain, to determine if better detection and ranking performance is achieved through the use of a distributed sensor network. Bespoke algorithms are introduced for detection and ranking ISR missions leveraging a distributed network of radio-frequency sensors: the first set of bespoke algorithms area based upon a depth-based nonparametric detection algorithm, which is to shown to enhance the recovery of targets under lower signal-to-noise ratios than an equivalent monostatic radar system; the second set of bespoke algorithms are based upon random matrix theoretic and concentration of measure mathematics, and demonstrated to outperform the depth-based nonparametric approach. This latter approach shall be shown to be effective across a broad range of signal-to-noise ratios, both positive and negative
    corecore