513 research outputs found

    Bayesian Modelling of Functional Whole Brain Connectivity

    Get PDF

    Physiological Gaussian Process Priors for the Hemodynamics in fMRI Analysis

    Full text link
    Background: Inference from fMRI data faces the challenge that the hemodynamic system that relates neural activity to the observed BOLD fMRI signal is unknown. New Method: We propose a new Bayesian model for task fMRI data with the following features: (i) joint estimation of brain activity and the underlying hemodynamics, (ii) the hemodynamics is modeled nonparametrically with a Gaussian process (GP) prior guided by physiological information and (iii) the predicted BOLD is not necessarily generated by a linear time-invariant (LTI) system. We place a GP prior directly on the predicted BOLD response, rather than on the hemodynamic response function as in previous literature. This allows us to incorporate physiological information via the GP prior mean in a flexible way, and simultaneously gives us the nonparametric flexibility of the GP. Results: Results on simulated data show that the proposed model is able to discriminate between active and non-active voxels also when the GP prior deviates from the true hemodynamics. Our model finds time varying dynamics when applied to real fMRI data. Comparison with Existing Method(s): The proposed model is better at detecting activity in simulated data than standard models, without inflating the false positive rate. When applied to real fMRI data, our GP model in several cases finds brain activity where previously proposed LTI models does not. Conclusions: We have proposed a new non-linear model for the hemodynamics in task fMRI, that is able to detect active voxels, and gives the opportunity to ask new kinds of questions related to hemodynamics.Comment: 18 pages, 14 figure

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data

    Get PDF
    In this paper we propose a unified, probabilistically coherent framework for the analysis of task-related brain activity in multi-subject fMRI experiments. This is distinct from two-stage “group analysis” approaches traditionally considered in the fMRI literature, which separate the inference on the individual fMRI time courses from the inference at the population level. In our modeling approach we consider a spatiotemporal linear regression model and specifically account for the between-subjects heterogeneity in neuronal activity via a spatially informed multi-subject nonparametric variable selection prior. For posterior inference, in addition to Markov chain Monte Carlo sampling algorithms, we develop suitable variational Bayes algorithms. We show on simulated data that variational Bayes inference achieves satisfactory results at more reduced computational costs than using MCMC, allowing scalability of our methods. In an application to data collected to assess brain responses to emotional stimuli our method correctly detects activation in visual areas when visual stimuli are presented

    Modeling Structural Brain Connectivity

    Get PDF

    Improving the accuracy of brain activation maps in the group-level analysis of fMRI data utilizing spatiotemporal Gaussian process model

    Get PDF
    OBJECTIVE: Accuracy and precision of the statistical analysis methods used for brain activation maps are essential. Adjusting models to consider spatiotemporal correlation embedded in fMRI data may increase their accuracy, but it also introduces a high computational cost. The present study aimed to apply and assess the spatiotemporal Gaussian process (STGP) model to improve accuracy and reduce cost. METHODS: We applied the spatiotemporal Gaussian process (STGP) model for both simulated and experimental memory tfMRI data and compared the findings with fast, fully Bayesian, and General Linear Models (GLM). To assess their accuracy and precision, the models were fitted to the simulated data (1000 voxels,100 times point for 50 people), and an average of accuracy indexes of 100 repetitions was computed. Functional and activation maps for all models were calculated in experimental data analysis. RESULTS: STGP model resulted in a higher Z-score in the whole brain, in the 1000 most activated voxels, and in the frontal lobe as the approved memory area. Based on the simulated data, the STGP model showed more accuracy and precision than the other two models. However, its computational time was more than the GLM, as the price of model correction, but much less than that of the fast, fully Bayesian model. CONCLUSION: Spatiotemporal correlation further improved the accuracy of the STGP compared to the GLM and fast, fully Bayesian model. This can result in more accurate activation maps. Moreover, the STGP model’s computational speed appears to be reasonable for model application
    • …
    corecore