28,387 research outputs found

    Conditional density estimation in a regression setting

    Full text link
    Regression problems are traditionally analyzed via univariate characteristics like the regression function, scale function and marginal density of regression errors. These characteristics are useful and informative whenever the association between the predictor and the response is relatively simple. More detailed information about the association can be provided by the conditional density of the response given the predictor. For the first time in the literature, this article develops the theory of minimax estimation of the conditional density for regression settings with fixed and random designs of predictors, bounded and unbounded responses and a vast set of anisotropic classes of conditional densities. The study of fixed design regression is of special interest and novelty because the known literature is devoted to the case of random predictors. For the aforementioned models, the paper suggests a universal adaptive estimator which (i) matches performance of an oracle that knows both an underlying model and an estimated conditional density; (ii) is sharp minimax over a vast class of anisotropic conditional densities; (iii) is at least rate minimax when the response is independent of the predictor and thus a bivariate conditional density becomes a univariate density; (iv) is adaptive to an underlying design (fixed or random) of predictors.Comment: Published in at http://dx.doi.org/10.1214/009053607000000253 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On clustering procedures and nonparametric mixture estimation

    Full text link
    This paper deals with nonparametric estimation of conditional den-sities in mixture models in the case when additional covariates are available. The proposed approach consists of performing a prelim-inary clustering algorithm on the additional covariates to guess the mixture component of each observation. Conditional densities of the mixture model are then estimated using kernel density estimates ap-plied separately to each cluster. We investigate the expected L 1 -error of the resulting estimates and derive optimal rates of convergence over classical nonparametric density classes provided the clustering method is accurate. Performances of clustering algorithms are measured by the maximal misclassification error. We obtain upper bounds of this quantity for a single linkage hierarchical clustering algorithm. Lastly, applications of the proposed method to mixture models involving elec-tricity distribution data and simulated data are presented

    General empirical Bayes wavelet methods and exactly adaptive minimax estimation

    Full text link
    In many statistical problems, stochastic signals can be represented as a sequence of noisy wavelet coefficients. In this paper, we develop general empirical Bayes methods for the estimation of true signal. Our estimators approximate certain oracle separable rules and achieve adaptation to ideal risks and exact minimax risks in broad collections of classes of signals. In particular, our estimators are uniformly adaptive to the minimum risk of separable estimators and the exact minimax risks simultaneously in Besov balls of all smoothness and shape indices, and they are uniformly superefficient in convergence rates in all compact sets in Besov spaces with a finite secondary shape parameter. Furthermore, in classes nested between Besov balls of the same smoothness index, our estimators dominate threshold and James-Stein estimators within an infinitesimal fraction of the minimax risks. More general block empirical Bayes estimators are developed. Both white noise with drift and nonparametric regression are considered.Comment: Published at http://dx.doi.org/10.1214/009053604000000995 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Decompounding on compact Lie groups

    Full text link
    Noncommutative harmonic analysis is used to solve a nonparametric estimation problem stated in terms of compound Poisson processes on compact Lie groups. This problem of decompounding is a generalization of a similar classical problem. The proposed solution is based on a char- acteristic function method. The treated problem is important to recent models of the physical inverse problem of multiple scattering.Comment: 26 pages, 3 figures, 25 reference

    Variational Analysis of Constrained M-Estimators

    Get PDF
    We propose a unified framework for establishing existence of nonparametric M-estimators, computing the corresponding estimates, and proving their strong consistency when the class of functions is exceptionally rich. In particular, the framework addresses situations where the class of functions is complex involving information and assumptions about shape, pointwise bounds, location of modes, height at modes, location of level-sets, values of moments, size of subgradients, continuity, distance to a "prior" function, multivariate total positivity, and any combination of the above. The class might be engineered to perform well in a specific setting even in the presence of little data. The framework views the class of functions as a subset of a particular metric space of upper semicontinuous functions under the Attouch-Wets distance. In addition to allowing a systematic treatment of numerous M-estimators, the framework yields consistency of plug-in estimators of modes of densities, maximizers of regression functions, level-sets of classifiers, and related quantities, and also enables computation by means of approximating parametric classes. We establish consistency through a one-sided law of large numbers, here extended to sieves, that relaxes assumptions of uniform laws, while ensuring global approximations even under model misspecification
    • …
    corecore