58 research outputs found

    Map-Aware Models for Indoor Wireless Localization Systems: An Experimental Study

    Full text link
    The accuracy of indoor wireless localization systems can be substantially enhanced by map-awareness, i.e., by the knowledge of the map of the environment in which localization signals are acquired. In fact, this knowledge can be exploited to cancel out, at least to some extent, the signal degradation due to propagation through physical obstructions, i.e., to the so called non-line-of-sight bias. This result can be achieved by developing novel localization techniques that rely on proper map-aware statistical modelling of the measurements they process. In this manuscript a unified statistical model for the measurements acquired in map-aware localization systems based on time-of-arrival and received signal strength techniques is developed and its experimental validation is illustrated. Finally, the accuracy of the proposed map-aware model is assessed and compared with that offered by its map-unaware counterparts. Our numerical results show that, when the quality of acquired measurements is poor, map-aware modelling can enhance localization accuracy by up to 110% in certain scenarios.Comment: 13 pages, 11 figures, 1 table. IEEE Transactions on Wireless Communications, 201

    WiFi-based indoor line-of-sight identification

    Get PDF

    Two Novel Methods for Accurate NLOS Detection Based on Channel Statistics

    Get PDF
    ABSTRACT Time-of-arrival (TOA) estimation is the first step of the most positioning algorithms. However in various environments especially when ultra wideband (UWB) pulses are used, TOA extraction from the received signal is challenging. UWB radio propagation bears multipath phenomenon, therefore correct identification of the first path TOA highly depends on the statistical characteristics of the environment and apprehension that the signal has been passed through the line-of-sight (LOS) channel or the non-line-of-sight (NLOS) one. In this paper, two novel NLOS identification techniques based on the multipath channel statistics are proposed. Simulations show that the first technique using the fitness equations of mean and variance of the received signal is suitable for residential and outdoor environments. The other one that compares the relative energy of two different periods of the received signal is more accurate in office and industrial environments. IEEE 802.15.4a channel models are used and two hypothesis tests are applied to distinguish between LOS and NLOS. The high accuracy identification of channel type is achieved for all mentioned environments

    LiFi: Line-of-sight identification with WiFi

    Get PDF

    Robot Localization in an Agricultural Environment

    Get PDF
    Localization and Mapping of autonomous robots in an harsh and unstable environment such as a steep slope vineyard is a challenging research topic. The commonly used Dead Reckoning systems can fail due to the harsh conditions of the terrain and the accurate Global Position System can be considerably noisy or not always available. Agriculture is moving towards a precision agriculture, with advanced monitoring systems and wireless sensors networks. These systems and wireless sensors are installed in the crop field and can be considered relevant landmarks for robot localization using different types of technologies.In this work the performance of Pozyx, a low cost Time-of-flight system with Ultra-Wide Bandwidth (UWB) technology, is studied and implemented on a real robot range-based localization system. Firstly the error of both the range-only system and the embedded localization algorithm of the sensor is characterized. Then the range measurements are filtered with an EKF algorithm to output the robot pose and finally compared with the localization algorithm of the sensor.The obtained results are presented and compared with previous works showing an increased redundancy of the robot localization estimation. The UWB is proved to offer a good solution for a harsh environment as the agricultural one since its range-measurements are not much impacted by the atmospheric conditions. The discussion also allows to present formulations for better results of Beacons Mapping Procedure (BMP) required for accurate and reliable localization systems

    Wireless Localization Systems: Statistical Modeling and Algorithm Design

    Get PDF
    Wireless localization systems are essential for emerging applications that rely on context-awareness, especially in civil, logistic, and security sectors. Accurate localization in indoor environments is still a challenge and triggers a fervent research activity worldwide. The performance of such systems relies on the quality of range measurements gathered by processing wireless signals within the sensors composing the localization system. Such range estimates serve as observations for the target position inference. The quality of range estimates depends on the network intrinsic properties and signal processing techniques. Therefore, the system design and analysis call for the statistical modeling of range information and the algorithm design for ranging, localization and tracking. The main objectives of this thesis are: (i) the derivation of statistical models and (ii) the design of algorithms for different wire- less localization systems, with particular regard to passive and semi-passive systems (i.e., active radar systems, passive radar systems, and radio frequency identification systems). Statistical models for the range information are derived, low-complexity algorithms with soft-decision and hard-decision are proposed, and several wideband localization systems have been analyzed. The research activity has been conducted also within the framework of different projects in collaboration with companies and other universities, and within a one-year-long research period at Massachusetts Institute of Technology, Cambridge, MA, USA. The analysis of system performance, the derived models, and the proposed algorithms are validated considering different case studies in realistic scenarios and also using the results obtained under the aforementioned projects

    Radio Frequency Interference Impact Assessment on Global Navigation Satellite Systems

    Get PDF
    The Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to perform a study on the Radio Frequency (RF) threat against telecommunications and ICT control systems. This study is divided into two parts. The rst part concerns the assessment of high energy radio frequency (HERF) threats, where the focus is on the generation of electromagnetic pulses (EMP), the development of corresponding devices and the possible impact on ICT and power distribution systems. The second part of the study concerns radio frequency interference (RFI) with regard to global navigation satellite systems (GNSS). This document contributes to the second part and contains a detailed literature study disclosing the weaknesses of GNSS systems. Whereas the HERF analysis only concerns intentional interference issues, this study on GNSS also takes into account unintentional interference, enlarging the spectrum of plausible interference scenarios.JRC.DG.G.6-Security technology assessmen

    Modeling the Behavior of Multipath Components Pertinent to Indoor Geolocation

    Get PDF
    Recently, a number of empirical models have been introduced in the literature for the behavior of direct path used in the design of algorithms for RF based indoor geolocation. Frequent absence of direct path has been a major burden on the performance of these algorithms directing researchers to discover algorithms using multipath diversity. However, there is no reliable model for the behavior of multipath components pertinent to precise indoor geolocation. In this dissertation, we first examine the absence of direct path by statistical analysis of empirical data. Then we show how the concept of path persistency can be exploited to obtain accurate ranging using multipath diversity. We analyze the effects of building architecture on the multipath structure by demonstrating the effects of wall length and wall density on the path persistency. Finally, we introduce a comprehensive model for the spatial behavior of multipath components. We use statistical analysis of empirical data obtained by a measurement calibrated ray-tracing tool to model the time-of- arrival, angle-of-arrival and path gains. The relationship between the transmitter-receiver separation and the number of paths are also incorporated in our model. In addition, principles of ray optics are applied to explain the spatial evolution of path gains, time-of-arrival and angle-of-arrival of individual multipath components as a mobile terminal moves inside a typical indoor environment. We also use statistical modeling for the persistency and birth/death rate of the paths

    A framework for cooperative localization in ultra-wideband wireless networks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 89-93).Location-aware technologies have the potential to revolutionize computing, cellular services, sensor networks, and many other commercial, military, and social applications. In wireless networks, accurate information about an agent's location can give meaning to observed data and facilitate the agent's interactions with its surroundings and neighbors. Determining the location of one or more agents, known as localization or positioning, is a fundamental challenge. Most existing localization methods rely on existing infrastructure and hence lack the flexibility and robustness necessary for large ad-hoc networks. In this thesis, we describe a framework for localization that overcomes these limitations by utilizing cooperation: the agents in the network work together to determine their individual locations. We derive a practical algorithm for cooperative localization by formulating the problem as a factor graph and applying the sum-product algorithm. Each agent uses relative positioning measurements and probabilistic location information from its neighbors to iteratively update its location estimate. We investigate the performance of this algorithm in a network of ultra-wideband (UWB) nodes, which are well-suited for localization due to their potential to measure inter-node distances with high accuracy. Realistic models of UWB ranging error, based on an extensive measurement campaign in several indoor environments, are incorporated into the localization algorithm. Using the experimental data and simulations, we quantify the benefits that cooperation brings to localization.by Jaime Lien.M.Eng
    • …
    corecore