1,024 research outputs found

    Nonparametric statistical inference for drift vector fields of multi-dimensional diffusions

    Full text link
    The problem of determining a periodic Lipschitz vector field b=(b1,…,bd)b=(b_1, \dots, b_d) from an observed trajectory of the solution (Xt:0≤t≤T)(X_t: 0 \le t \le T) of the multi-dimensional stochastic differential equation \begin{equation*} dX_t = b(X_t)dt + dW_t, \quad t \geq 0, \end{equation*} where WtW_t is a standard dd-dimensional Brownian motion, is considered. Convergence rates of a penalised least squares estimator, which equals the maximum a posteriori (MAP) estimate corresponding to a high-dimensional Gaussian product prior, are derived. These results are deduced from corresponding contraction rates for the associated posterior distributions. The rates obtained are optimal up to log-factors in L2L^2-loss in any dimension, and also for supremum norm loss when d≤4d \le 4. Further, when d≤3d \le 3, nonparametric Bernstein-von Mises theorems are proved for the posterior distributions of bb. From this we deduce functional central limit theorems for the implied estimators of the invariant measure μb\mu_b. The limiting Gaussian process distributions have a covariance structure that is asymptotically optimal from an information-theoretic point of view.Comment: 55 pages, to appear in the Annals of Statistic

    Bayesian linear inverse problems in regularity scales

    Full text link
    We obtain rates of contraction of posterior distributions in inverse problems defined by scales of smoothness classes. We derive abstract results for general priors, with contraction rates determined by Galerkin approximation. The rate depends on the amount of prior concentration near the true function and the prior mass of functions with inferior Galerkin approximation. We apply the general result to non-conjugate series priors, showing that these priors give near optimal and adaptive recovery in some generality, Gaussian priors, and mixtures of Gaussian priors, where the latter are also shown to be near optimal and adaptive. The proofs are based on general testing and approximation arguments, without explicit calculations on the posterior distribution. We are thus not restricted to priors based on the singular value decomposition of the operator. We illustrate the results with examples of inverse problems resulting from differential equations.Comment: 34 page
    • …
    corecore