79 research outputs found

    Blind separation of complex-valued satellite-AIS data for marine surveillance: a spatial quadratic time-frequency domain approach

    Get PDF
    In this paper, the problem of the blind separation of complex-valued Satellite-AIS data for marine surveillance is addressed. Due to the specific properties of the sources under consideration: they are cyclo-stationary signals with two close cyclic frequencies, we opt for spatial quadratic time-frequency domain methods. The use of an additional diversity, the time delay, is aimed at making it possible to undo the mixing of signals at the multi-sensor receiver. The suggested method involves three main stages. First, the spatial generalized mean Ambiguity function of the observations across the array is constructed. Second, in the Ambiguity plane, Delay-Doppler regions of high magnitude are determined and Delay-Doppler points of peaky values are selected. Third, the mixing matrix is estimated from these Delay-Doppler regions using our proposed non-unitary joint zero-(block) diagonalization algorithms as to perform separation

    Simultaneous Source Localization and Polarization Estimation via Non-Orthogonal Joint Diagonalization with Vector-Sensors

    Get PDF
    Joint estimation of direction-of-arrival (DOA) and polarization with electromagnetic vector-sensors (EMVS) is considered in the framework of complex-valued non-orthogonal joint diagonalization (CNJD). Two new CNJD algorithms are presented, which propose to tackle the high dimensional optimization problem in CNJD via a sequence of simple sub-optimization problems, by using LU or LQ decompositions of the target matrices as well as the Jacobi-type scheme. Furthermore, based on the above CNJD algorithms we present a novel strategy to exploit the multi-dimensional structure present in the second-order statistics of EMVS outputs for simultaneous DOA and polarization estimation. Simulations are provided to compare the proposed strategy with existing tensorial or joint diagonalization based methods

    Blind Separation of Cyclostationary Sources Sharing Common Cyclic Frequencies Using Joint Diagonalization Algorithm

    Get PDF
    We propose a new method for blind source separation of cyclostationary sources, whose cyclic frequencies are unknown and may share one or more common cyclic frequencies. The suggested method exploits the cyclic correlation function of observation signals to compose a set of matrices which has a particular algebraic structure. The aforesaid matrices are automatically selected by proposing two new criteria. Then, they are jointly diagonalized so as to estimate the mixing matrix and retrieve the source signals as a consequence. The nonunitary joint diagonalization (NU-JD) is ensured by Broyden-Fletcher-Goldfarb-Shanno (BFGS) method which is the most commonly used update strategy for implementing a quasi-Newton technique. The efficiency of the method is illustrated by numerical simulations in digital communications context, which show good performances comparing to other stateof-the-art methods

    Tensors: a Brief Introduction

    No full text
    International audienceTensor decompositions are at the core of many Blind Source Separation (BSS) algorithms, either explicitly or implicitly. In particular, the Canonical Polyadic (CP) tensor decomposition plays a central role in identification of underdetermined mixtures. Despite some similarities, CP and Singular value Decomposition (SVD) are quite different. More generally, tensors and matrices enjoy different properties, as pointed out in this brief survey

    Algorithmes pour la diagonalisation conjointe de tenseurs sans contrainte unitaire. Application à la séparation MIMO de sources de télécommunications numériques

    Get PDF
    This thesis develops joint diagonalization of matrices and third-order tensors methods for MIMO source separation in the field of digital telecommunications. After a state of the art, the motivations and the objectives are presented. Then the joint diagonalisation and the blind source separation issues are defined and a link between both fields is established. Thereafter, five Jacobi-like iterative algorithms based on an LU parameterization are developed. For each of them, we propose to derive the diagonalization matrix by optimizing an inverse criterion. Two ways are investigated : minimizing the criterion in a direct way or assuming that the elements from the considered set are almost diagonal. Regarding the parameters derivation, two strategies are implemented : one consists in estimating each parameter independently, the other consists in the independent derivation of couple of well-chosen parameters. Hence, we propose three algorithms for the joint diagonalization of symmetric complex matrices or hermitian ones. The first one relies on searching for the roots of the criterion derivative, the second one relies on a minor eigenvector research and the last one relies on a gradient descent method enhanced by computation of the optimal adaptation step. In the framework of joint diagonalization of symmetric, INDSCAL or non symmetric third-order tensors, we have developed two algorithms. For each of them, the parameters derivation is done by computing the roots of the considered criterion derivative. We also show the link between the joint diagonalization of a third-order tensor set and the canonical polyadic decomposition of a fourth-order tensor. We confront both methods through numerical simulations. The good behavior of the proposed algorithms is illustrated by means of computing simulations. Finally, they are applied to the source separation of digital telecommunication signals.Cette thèse développe des méthodes de diagonalisation conjointe de matrices et de tenseurs d’ordre trois, et son application à la séparation MIMO de sources de télécommunications numériques. Après un état, les motivations et objectifs de la thèse sont présentés. Les problèmes de la diagonalisation conjointe et de la séparation de sources sont définis et un lien entre ces deux domaines est établi. Par la suite, plusieurs algorithmes itératifs de type Jacobi reposant sur une paramétrisation LU sont développés. Pour chacun des algorithmes, on propose de déterminer les matrices permettant de diagonaliser l’ensemble considéré par l’optimisation d’un critère inverse. On envisage la minimisation du critère selon deux approches : la première, de manière directe, et la seconde, en supposant que les éléments de l’ensemble considéré sont quasiment diagonaux. En ce qui concerne l’estimation des différents paramètres du problème, deux stratégies sont mises en œuvre : l’une consistant à estimer tous les paramètres indépendamment et l’autre reposant sur l’estimation indépendante de couples de paramètres spécifiquement choisis. Ainsi, nous proposons trois algorithmes pour la diagonalisation conjointe de matrices complexes symétriques ou hermitiennes et deux algorithmes pour la diagonalisation conjointe d’ensembles de tenseurs symétriques ou non-symétriques ou admettant une décomposition INDSCAL. Nous montrons aussi le lien existant entre la diagonalisation conjointe de tenseurs d’ordre trois et la décomposition canonique polyadique d’un tenseur d’ordre quatre, puis nous comparons les algorithmes développés à différentes méthodes de la littérature. Le bon comportement des algorithmes proposés est illustré au moyen de simulations numériques. Puis, ils sont validés dans le cadre de la séparation de sources de télécommunications numériques

    Estimation efficace des paramètres de signaux d'usagers radio-mobile par traitement avec antenne-réseau

    Get PDF
    Cette thèse aborde le problème d’estimation des paramètres de signaux d’usagers radio-mobile par traitement avec antenne-réseau. On adopte une approche de traitement théorique rigoureuse au problème en tentant de pallier aux limitations et désavantages des méthodes d’estimation existantes en ce domaine. Les chapitres principaux ont été rédigés en couvrant uniquement les aspects théoriques en lien aux contributions principales, tout en présentant une revue de littérature adéquate sur les sujets concernés. La thèse présente essentiellement trois volets distincts en lien à chacune des contributions en question. Suite à une revue des notions de base, on montre d’abord comment une méthode d’estimation exploitant des statistiques d’ordre supérieur a pu être développée à partir de l’amélioration d’un algorithme existant en ce domaine. On présente ensuite le cheminement qui a conduit à l’élaboration d’une technique d’estimation non linéaire exploitant les propriétés statistiques spécifiques des enveloppes complexes reçues, et ne possédant pas les limitations des algorithmes du second et quatrième ordre. Finalement, on présente le développement relatif à un algorithme d’estimation exploitant le caractère cyclostationnaire intrinsèque des signaux de communication dans un environnement asynchrone naturel. On montre comment un tel algorithme parvient à estimer la matrice de canal des signaux incidents indépendamment du caractère de corrélation spatiotemporel du bruit, et permettant de ce fait même une pleine exploitation du degré de liberté du réseau. La procédure d’estimation consiste en la résolution d’un problème de diagonalisation conjointe impliquant des matrices cibles issues d’une opération différentielle entre des matrices d’autocorrélation obtenues uniquement à partir de statistiques d’ordre deux. Pour chacune des contributions, des résultats de simulations sont présentés afin de confirmer l’efficacité des méthodes proposées.This thesis addresses the problem of parameter estimation of radio signals from mobile users using an antenna array. A rigorous theoretical approach to the problem is adopted in an attempt to overcome the limitations and disadvantages of existing estimation methods in this field. The main chapters have been written covering only the theoretical aspects related to the main contributions of the thesis, while at the same time providing an appropriate literature review on the considered topics. The thesis is divided into three main parts related to the aforesaid contributions. Following a review of the basics concepts in antenna array processing techniques for signal parameter estimation, we first present an improved version of an existing estimation algorithm expoiting higher-order statistics of the received signals. Subsequently, we show how a nonlinear estimation technique exploiting the specific statistical distributions of the received complex envelopes at the array can be developed in order to overcome the limitations of second and fourth-order algorithms. Finally, we present the development of an estimation algorithm exploiting the cyclostationary nature of communication signals in a natural asynchronous environment. We show how such an algorithm is able to estimate the channel matrix of the received signals independently of the spatial or temporal correlation structure of the noise, thereby enabling a full exploitation of the array’s degree of freedom. The estimation process is carried out by solving a joint diagonalization problem involving target matrices computed by a differential operation between autocorrelation matrices obtained by the sole use of second-order statistics. Various simulation experiments are presented for each contribution as a means of supporting and evidencing the effectiveness of the proposed methods
    • …
    corecore