4 research outputs found

    Digital watermark technology in security applications

    Get PDF
    With the rising emphasis on security and the number of fraud related crimes around the world, authorities are looking for new technologies to tighten security of identity. Among many modern electronic technologies, digital watermarking has unique advantages to enhance the document authenticity. At the current status of the development, digital watermarking technologies are not as matured as other competing technologies to support identity authentication systems. This work presents improvements in performance of two classes of digital watermarking techniques and investigates the issue of watermark synchronisation. Optimal performance can be obtained if the spreading sequences are designed to be orthogonal to the cover vector. In this thesis, two classes of orthogonalisation methods that generate binary sequences quasi-orthogonal to the cover vector are presented. One method, namely "Sorting and Cancelling" generates sequences that have a high level of orthogonality to the cover vector. The Hadamard Matrix based orthogonalisation method, namely "Hadamard Matrix Search" is able to realise overlapped embedding, thus the watermarking capacity and image fidelity can be improved compared to using short watermark sequences. The results are compared with traditional pseudo-randomly generated binary sequences. The advantages of both classes of orthogonalisation inethods are significant. Another watermarking method that is introduced in the thesis is based on writing-on-dirty-paper theory. The method is presented with biorthogonal codes that have the best robustness. The advantage and trade-offs of using biorthogonal codes with this watermark coding methods are analysed comprehensively. The comparisons between orthogonal and non-orthogonal codes that are used in this watermarking method are also made. It is found that fidelity and robustness are contradictory and it is not possible to optimise them simultaneously. Comparisons are also made between all proposed methods. The comparisons are focused on three major performance criteria, fidelity, capacity and robustness. aom two different viewpoints, conclusions are not the same. For fidelity-centric viewpoint, the dirty-paper coding methods using biorthogonal codes has very strong advantage to preserve image fidelity and the advantage of capacity performance is also significant. However, from the power ratio point of view, the orthogonalisation methods demonstrate significant advantage on capacity and robustness. The conclusions are contradictory but together, they summarise the performance generated by different design considerations. The synchronisation of watermark is firstly provided by high contrast frames around the watermarked image. The edge detection filters are used to detect the high contrast borders of the captured image. By scanning the pixels from the border to the centre, the locations of detected edges are stored. The optimal linear regression algorithm is used to estimate the watermarked image frames. Estimation of the regression function provides rotation angle as the slope of the rotated frames. The scaling is corrected by re-sampling the upright image to the original size. A theoretically studied method that is able to synchronise captured image to sub-pixel level accuracy is also presented. By using invariant transforms and the "symmetric phase only matched filter" the captured image can be corrected accurately to original geometric size. The method uses repeating watermarks to form an array in the spatial domain of the watermarked image and the the array that the locations of its elements can reveal information of rotation, translation and scaling with two filtering processes

    Different Facial Recognition Techniques in Transform Domains

    Get PDF
    The human face is frequently used as the biometric signal presented to a machine for identification purposes. Several challenges are encountered while designing face identification systems. The challenges are either caused by the process of capturing the face image itself, or occur while processing the face poses. Since the face image not only contains the face, this adds to the data dimensionality, and thus degrades the performance of the recognition system. Face Recognition (FR) has been a major signal processing topic of interest in the last few decades. Most common applications of the FR include, forensics, access authorization to facilities, or simply unlocking of a smart phone. The three factors governing the performance of a FR system are: the storage requirements, the computational complexity, and the recognition accuracy. The typical FR system consists of the following main modules in each of the Training and Testing phases: Preprocessing, Feature Extraction, and Classification. The ORL, YALE, FERET, FEI, Cropped AR, and Georgia Tech datasets are used to evaluate the performance of the proposed systems. The proposed systems are categorized into Single-Transform and Two-Transform systems. In the first category, the features are extracted from a single domain, that of the Two-Dimensional Discrete Cosine Transform (2D DCT). In the latter category, the Two-Dimensional Discrete Wavelet Transform (2D DWT) coefficients are combined with those of the 2D DCT to form one feature vector. The feature vectors are either used directly or further processed to obtain the persons\u27 final models. The Principle Component Analysis (PCA), the Sparse Representation, Vector Quantization (VQ) are employed as a second step in the Feature Extraction Module. Additionally, a technique is proposed in which the feature vector is composed of appropriately selected 2D DCT and 2D DWT coefficients based on a residual minimization algorithm

    Mathematically inspired approaches to face recognition in uncontrolled conditions: super resolution and compressive sensing

    Get PDF
    Face recognition systems under uncontrolled conditions using surveillance cameras is becom-ing essential for establishing the identity of a person at a distance from the camera and providing safety and security against terrorist, attack, robbery and crime. Therefore, the performance of face recognition in low-resolution degraded images with low quality against im-ages with high quality/and of good resolution/size is considered the most challenging tasks and constitutes focus of this thesis. The work in this thesis is designed to further investigate these issues and the following being our main aim: “To investigate face identification from a distance and under uncontrolled conditions by pri-marily addressing the problem of low-resolution images using existing/modified mathemati-cally inspired super resolution schemes that are based on the emerging new paradigm of compressive sensing and non-adaptive dictionaries based super resolution.” We shall firstly investigate and develop the compressive sensing (CS) based sparse represen-tation of a sample image to reconstruct a high-resolution image for face recognition, by tak-ing different approaches to constructing CS-compliant dictionaries such as Gaussian Random Matrix and Toeplitz Circular Random Matrix. In particular, our focus is on constructing CS non-adaptive dictionaries (independent of face image information), which contrasts with ex-isting image-learnt dictionaries, but satisfies some form of the Restricted Isometry Property (RIP) which is sufficient to comply with the CS theorem regarding the recovery of sparsely represented images. We shall demonstrate that the CS dictionary techniques for resolution enhancement tasks are able to develop scalable face recognition schemes under uncontrolled conditions and at a distance. Secondly, we shall clarify the comparisons of the strength of sufficient CS property for the various types of dictionaries and demonstrate that the image-learnt dictionary far from satisfies the RIP for compressive sensing. Thirdly, we propose dic-tionaries based on the high frequency coefficients of the training set and investigate the im-pact of using dictionaries on the space of feature vectors of the low-resolution image for face recognition when applied to the wavelet domain. Finally, we test the performance of the de-veloped schemes on CCTV images with unknown model of degradation, and show that these schemes significantly outperform existing techniques developed for such a challenging task. However, the performance is still not comparable to what could be achieved in controlled en-vironment, and hence we shall identify remaining challenges to be investigated in the future

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений
    corecore