1,728 research outputs found

    Spectral Mixture Decomposition by Least Dependent Component Analysis

    Full text link
    A recently proposed mutual information based algorithm for decomposing data into least dependent components (MILCA) is applied to spectral analysis, namely to blind recovery of concentrations and pure spectra from their linear mixtures. The algorithm is based on precise estimates of mutual information between measured spectra, which allows to assess and make use of actual statistical dependencies between them. We show that linear filtering performed by taking second derivatives effectively reduces the dependencies caused by overlapping spectral bands and, thereby, assists resolving pure spectra. In combination with second derivative preprocessing and alternating least squares postprocessing, MILCA shows decomposition performance comparable with or superior to specialized chemometrics algorithms. The results are illustrated on a number of simulated and experimental (infrared and Raman) mixture problems, including spectroscopy of complex biological materials. MILCA is available online at http://www.fz-juelich.de/nic/cs/softwareComment: 27 pages, 7 figures, 1 table; uses elsart.cl

    Convex Cauchy Schwarz Independent Component Analysis for Blind Source Separation

    Full text link
    We present a new high performance Convex Cauchy Schwarz Divergence (CCS DIV) measure for Independent Component Analysis (ICA) and Blind Source Separation (BSS). The CCS DIV measure is developed by integrating convex functions into the Cauchy Schwarz inequality. By including a convexity quality parameter, the measure has a broad control range of its convexity curvature. With this measure, a new CCS ICA algorithm is structured and a non parametric form is developed incorporating the Parzen window based distribution. Furthermore, pairwise iterative schemes are employed to tackle the high dimensional problem in BSS. We present two schemes of pairwise non parametric ICA algorithms, one is based on gradient decent and the second on the Jacobi Iterative method. Several case study scenarios are carried out on noise free and noisy mixtures of speech and music signals. Finally, the superiority of the proposed CCS ICA algorithm is demonstrated in metric comparison performance with FastICA, RobustICA, convex ICA (C ICA), and other leading existing algorithms.Comment: 13 page

    Supervised Dictionary Learning and Sparse Representation-A Review

    Full text link
    Dictionary learning and sparse representation (DLSR) is a recent and successful mathematical model for data representation that achieves state-of-the-art performance in various fields such as pattern recognition, machine learning, computer vision, and medical imaging. The original formulation for DLSR is based on the minimization of the reconstruction error between the original signal and its sparse representation in the space of the learned dictionary. Although this formulation is optimal for solving problems such as denoising, inpainting, and coding, it may not lead to optimal solution in classification tasks, where the ultimate goal is to make the learned dictionary and corresponding sparse representation as discriminative as possible. This motivated the emergence of a new category of techniques, which is appropriately called supervised dictionary learning and sparse representation (S-DLSR), leading to more optimal dictionary and sparse representation in classification tasks. Despite many research efforts for S-DLSR, the literature lacks a comprehensive view of these techniques, their connections, advantages and shortcomings. In this paper, we address this gap and provide a review of the recently proposed algorithms for S-DLSR. We first present a taxonomy of these algorithms into six categories based on the approach taken to include label information into the learning of the dictionary and/or sparse representation. For each category, we draw connections between the algorithms in this category and present a unified framework for them. We then provide guidelines for applied researchers on how to represent and learn the building blocks of an S-DLSR solution based on the problem at hand. This review provides a broad, yet deep, view of the state-of-the-art methods for S-DLSR and allows for the advancement of research and development in this emerging area of research

    A survey of dimensionality reduction techniques

    Full text link
    Experimental life sciences like biology or chemistry have seen in the recent decades an explosion of the data available from experiments. Laboratory instruments become more and more complex and report hundreds or thousands measurements for a single experiment and therefore the statistical methods face challenging tasks when dealing with such high dimensional data. However, much of the data is highly redundant and can be efficiently brought down to a much smaller number of variables without a significant loss of information. The mathematical procedures making possible this reduction are called dimensionality reduction techniques; they have widely been developed by fields like Statistics or Machine Learning, and are currently a hot research topic. In this review we categorize the plethora of dimension reduction techniques available and give the mathematical insight behind them

    Independent Component Analysis via Energy-based and Kernel-based Mutual Dependence Measures

    Full text link
    We apply both distance-based (Jin and Matteson, 2017) and kernel-based (Pfister et al., 2016) mutual dependence measures to independent component analysis (ICA), and generalize dCovICA (Matteson and Tsay, 2017) to MDMICA, minimizing empirical dependence measures as an objective function in both deflation and parallel manners. Solving this minimization problem, we introduce Latin hypercube sampling (LHS) (McKay et al., 2000), and a global optimization method, Bayesian optimization (BO) (Mockus, 1994) to improve the initialization of the Newton-type local optimization method. The performance of MDMICA is evaluated in various simulation studies and an image data example. When the ICA model is correct, MDMICA achieves competitive results compared to existing approaches. When the ICA model is misspecified, the estimated independent components are less mutually dependent than the observed components using MDMICA, while they are prone to be even more mutually dependent than the observed components using other approaches.Comment: 11 pages, 4 figure

    Two Pairwise Iterative Schemes For High Dimensional Blind Source Separation

    Full text link
    This paper addresses the high dimensionality problem in blind source separation (BSS), where the number of sources is greater than two. Two pairwise iterative schemes are proposed to tackle this high dimensionality problem. The two pairwise schemes realize nonparametric independent component analysis (ICA) algorithms based on a new high-performance Convex CauchySchwarz Divergence (CCSDIV). These two schemes enable fast and efficient demixing of sources in real-world high dimensional source applications. Finally, the performance superiority of the proposed schemes is demonstrated in metric-comparison with FastICA, RobustICA, convex ICA (CICA), and other leading existing algorithms.Comment: 10 pages, 1 figures, 6 tables. arXiv admin note: substantial text overlap with arXiv:1408.019

    Decoding the Encoding of Functional Brain Networks: an fMRI Classification Comparison of Non-negative Matrix Factorization (NMF), Independent Component Analysis (ICA), and Sparse Coding Algorithms

    Full text link
    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet mathematical constraints such as sparse coding and positivity both provide alternate biologically-plausible frameworks for generating brain networks. Non-negative Matrix Factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks for different constraints are used as basis functions to encode the observed functional activity at a given time point. These encodings are decoded using machine learning to compare both the algorithms and their assumptions, using the time series weights to predict whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. For classifying cognitive activity, the sparse coding algorithm of L1L1 Regularized Learning consistently outperformed 4 variations of ICA across different numbers of networks and noise levels (p<<0.001). The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy. Within each algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<<0.001). The success of sparse coding algorithms may suggest that algorithms which enforce sparse coding, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA

    Linked Component Analysis from Matrices to High Order Tensors: Applications to Biomedical Data

    Full text link
    With the increasing availability of various sensor technologies, we now have access to large amounts of multi-block (also called multi-set, multi-relational, or multi-view) data that need to be jointly analyzed to explore their latent connections. Various component analysis methods have played an increasingly important role for the analysis of such coupled data. In this paper, we first provide a brief review of existing matrix-based (two-way) component analysis methods for the joint analysis of such data with a focus on biomedical applications. Then, we discuss their important extensions and generalization to multi-block multiway (tensor) data. We show how constrained multi-block tensor decomposition methods are able to extract similar or statistically dependent common features that are shared by all blocks, by incorporating the multiway nature of data. Special emphasis is given to the flexible common and individual feature analysis of multi-block data with the aim to simultaneously extract common and individual latent components with desired properties and types of diversity. Illustrative examples are given to demonstrate their effectiveness for biomedical data analysis.Comment: 20 pages, 11 figures, Proceedings of the IEEE, 201

    Inhomogeneous Hypergraph Clustering with Applications

    Full text link
    Hypergraph partitioning is an important problem in machine learning, computer vision and network analytics. A widely used method for hypergraph partitioning relies on minimizing a normalized sum of the costs of partitioning hyperedges across clusters. Algorithmic solutions based on this approach assume that different partitions of a hyperedge incur the same cost. However, this assumption fails to leverage the fact that different subsets of vertices within the same hyperedge may have different structural importance. We hence propose a new hypergraph clustering technique, termed inhomogeneous hypergraph partitioning, which assigns different costs to different hyperedge cuts. We prove that inhomogeneous partitioning produces a quadratic approximation to the optimal solution if the inhomogeneous costs satisfy submodularity constraints. Moreover, we demonstrate that inhomogenous partitioning offers significant performance improvements in applications such as structure learning of rankings, subspace segmentation and motif clustering.Comment: To appear in NIPS 201
    • …
    corecore