278 research outputs found

    Nonnegative polynomial optimization over unit spheres and convex programming relaxations

    Get PDF
    We consider approximation algorithms for nonnegative polynomial optimization over unit spheres. Such optimization models have wide applications, e.g., in signal and image processing, high order statistics, and computer vision. Since polynomial functions are nonconvex, the problems under consideration are all NP-hard. In this paper, based on convex polynomial optimization relaxations, we propose polynomial-time approximation algorithms with new approximation bounds. Numerical results are reported to show the effectiveness of the proposed approximation algorithms

    Polynomial Norms

    Get PDF
    In this paper, we study polynomial norms, i.e. norms that are the dthd^{\text{th}} root of a degree-dd homogeneous polynomial ff. We first show that a necessary and sufficient condition for f1/df^{1/d} to be a norm is for ff to be strictly convex, or equivalently, convex and positive definite. Though not all norms come from dthd^{\text{th}} roots of polynomials, we prove that any norm can be approximated arbitrarily well by a polynomial norm. We then investigate the computational problem of testing whether a form gives a polynomial norm. We show that this problem is strongly NP-hard already when the degree of the form is 4, but can always be answered by testing feasibility of a semidefinite program (of possibly large size). We further study the problem of optimizing over the set of polynomial norms using semidefinite programming. To do this, we introduce the notion of r-sos-convexity and extend a result of Reznick on sum of squares representation of positive definite forms to positive definite biforms. We conclude with some applications of polynomial norms to statistics and dynamical systems

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Maximum block improvement and polynomial optimization

    Get PDF
    • …
    corecore