2,208 research outputs found

    Preferences as inconsistency-resolvers: The Inconsistency-adaptive Logic PRL

    Get PDF
    In this paper I generalize the new approach to nonmonotonic reasoning that was presented in [6]. This generalization results in the inconsistency-adaptive logic PRL (PR stands for preference-based reliability strategy). I give proof theory, semantics, mention interesting properties, and comment on the reconstruction and amelioration of other nonmonotonic logics and mechanisms

    Optimizing the computation of overriding

    Full text link
    We introduce optimization techniques for reasoning in DLN---a recently introduced family of nonmonotonic description logics whose characterizing features appear well-suited to model the applicative examples naturally arising in biomedical domains and semantic web access control policies. Such optimizations are validated experimentally on large KBs with more than 30K axioms. Speedups exceed 1 order of magnitude. For the first time, response times compatible with real-time reasoning are obtained with nonmonotonic KBs of this size

    Large-scale Parallel Stratified Defeasible Reasoning

    Get PDF
    We are recently experiencing an unprecedented explosion of available data from the Web, sensors readings, scientific databases, government authorities and more. Such datasets could benefit from the introduction of rule sets encoding commonly accepted rules or facts, application- or domain-specific rules, commonsense knowledge etc. This raises the question of whether, how, and to what extent knowledge representation methods are capable of handling huge amounts of data for these applications. In this paper, we consider inconsistency-tolerant reasoning in the form of defeasible logic, and analyze how parallelization, using the MapReduce framework, can be used to reason with defeasible rules over huge datasets. We extend previous work by dealing with predicates of arbitrary arity, under the assumption of stratification. Moving from unary to multi-arity predicates is a decisive step towards practical applications, e.g. reasoning with linked open (RDF) data. Our experimental results demonstrate that defeasible reasoning with millions of data is performant, and has the potential to scale to billions of facts

    Preferential Multi-Context Systems

    Full text link
    Multi-context systems (MCS) presented by Brewka and Eiter can be considered as a promising way to interlink decentralized and heterogeneous knowledge contexts. In this paper, we propose preferential multi-context systems (PMCS), which provide a framework for incorporating a total preorder relation over contexts in a multi-context system. In a given PMCS, its contexts are divided into several parts according to the total preorder relation over them, moreover, only information flows from a context to ones of the same part or less preferred parts are allowed to occur. As such, the first ll preferred parts of an PMCS always fully capture the information exchange between contexts of these parts, and then compose another meaningful PMCS, termed the ll-section of that PMCS. We generalize the equilibrium semantics for an MCS to the (maximal) l≤l_{\leq}-equilibrium which represents belief states at least acceptable for the ll-section of an PMCS. We also investigate inconsistency analysis in PMCS and related computational complexity issues
    • …
    corecore