11 research outputs found

    Primal-Dual Active-Set Methods for Convex Quadratic Optimization with Applications

    Get PDF
    Primal-dual active-set (PDAS) methods are developed for solving quadratic optimization problems (QPs). Such problems arise in their own right in optimal control and statistics–two applications of interest considered in this dissertation–and as subproblems when solving nonlinear optimization problems. PDAS methods are promising as they possess the same favorable properties as other active-set methods, such as their ability to be warm-started and to obtain highly accurate solutions by explicitly identifying sets of constraints that are active at an optimal solution. However, unlike traditional active-set methods, PDAS methods have convergence guarantees despite making rapid changes in active-set estimates, making them well suited for solving large-scale problems.Two PDAS variants are proposed for efficiently solving generally-constrained convex QPs. Both variants ensure global convergence of the iterates by enforcing montonicity in a measure of progress. Besides identifying an estimate set estimate, a novel uncertain set is introduced into the framework in order to house indices of variables that have been identified as being susceptible to cycling. The introduction of the uncertainty set guarantees convergence of the algorithm, and with techniques proposed to keep the set from expanding quickly, the practical performance of the algorithm is shown to be very efficient. Another PDAS variant is proposed for solving certain convex QPs that commonly arise when discretizing optimal control problems. The proposed framework allows inexactness in the subproblem solutions, which can significantly reduce computational cost in large-scale settings. By controlling the level inexactness either by exploiting knowledge of an upper bound of a matrix inverse or by dynamic estimation of such a value, the method achieves convergence guarantees and is shown to outperform a method that employs exact solutions computed by direct factorization techniques.Finally, the application of PDAS techniques for applications in statistics, variants are proposed for solving isotonic regression (IR) and trend filtering (TR) problems. It is shown that PDAS can solve an IR problem with n data points with only O(n) arithmetic operations. Moreover, the method is shown to outperform the state-of-the-art method for solving IR problems, especially when warm-starting is considered. Enhancements to themethod are proposed for solving general TF problems, and numerical results are presented to show that PDAS methods are viable for a broad class of such problems

    Hybrid Filter Methods for Nonlinear Optimization

    Get PDF
    Globalization strategies used by algorithms to solve nonlinear constrained optimization problems must balance the oftentimes conflicting goals of reducing the objective function and satisfying the constraints. The use of merit functions and filters are two such popular strategies, both of which have their strengths and weaknesses. In particular, traditional filter methods require the use of a restoration phase that is designed to reduce infeasibility while ignoring the objective function. For this reason, there is often a significant decrease in performance when restoration is triggered. In Chapter 3, we present a new filter method that addresses this main weakness of traditional filter methods. Specifically, we present a hybrid filter method that avoids a traditional restoration phase and instead employs a penalty mode that is built upon the l-1 penalty function; the penalty mode is entered when an iterate decreases both the penalty function and the constraint violation. Moreover, the algorithm uses the same search direction computation procedure during every iteration and uses local feasibility estimates that emerge during this procedure to define a new, improved, and adaptive margin (envelope) of the filter. Since we use the penalty function (a combination of the objective function and constraint violation) to define the search direction, our algorithm never ignores the objective function, a property that is not shared by traditional filter methods. Our algorithm thusly draws upon the strengths of both filter and penalty methods to form a novel hybrid approach that is robust and efficient. In particular, under common assumptions, we prove global convergence of our algorithm. In Chapter 4, we present a nonmonotonic variant of the algorithm in Chapter 3. For this version of our method, we prove that it generates iterates that converge to a first-order solution from an arbitrary starting point, with a superlinear rate of convergence. We also present numerical results that validate the efficiency of our method. Finally, in Chapter 5, we present a numerical study on the application of a recently developed bound-constrained quadratic optimization algorithm on the dual formulation of sparse large-scale strictly convex quadratic problems. Such problems are of particular interest since they arise as subproblems during every iteration of our new filter methods

    Numerical Techniques for Stochastic Optimization

    Get PDF
    This is a comprehensive and timely overview of the numerical techniques that have been developed to solve stochastic programming problems. After a brief introduction to the field, where accent is laid on modeling questions, the next few chapters lay out the challenges that must be met in this area. They also provide the background for the description of the computer implementations given in the third part of the book. Selected applications are described next. Some of these have directly motivated the development of the methods described in the earlier chapters. They include problems that come from facilities location, exploration investments, control of ecological systems, energy distribution and generation. Test problems are collected in the last chapter. This is the first book devoted to this subject. It comprehensively covers all major advances in the field (both Western and Soviet). It is only because of the recent developments in computer technology, that we have now reached a point where our computing power matches the inherent size requirements faced in this area. The book demonstrates that a large class of stochastic programming problems are now in the range of our numerical capacities

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Discovery in Physics

    Get PDF
    Volume 2 covers knowledge discovery in particle and astroparticle physics. Instruments gather petabytes of data and machine learning is used to process the vast amounts of data and to detect relevant examples efficiently. The physical knowledge is encoded in simulations used to train the machine learning models. The interpretation of the learned models serves to expand the physical knowledge resulting in a cycle of theory enhancement

    Theoretical Approaches in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore