2,928 research outputs found

    Embedding Defeasible Logic into Logic Programming

    Full text link
    Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.Comment: To appear in Theory and Practice of Logic Programmin

    Disjunctive Logic Programs with Inheritance

    Full text link
    The paper proposes a new knowledge representation language, called DLP<, which extends disjunctive logic programming (with strong negation) by inheritance. The addition of inheritance enhances the knowledge modeling features of the language providing a natural representation of default reasoning with exceptions. A declarative model-theoretic semantics of DLP< is provided, which is shown to generalize the Answer Set Semantics of disjunctive logic programs. The knowledge modeling features of the language are illustrated by encoding classical nonmonotonic problems in DLP<. The complexity of DLP< is analyzed, proving that inheritance does not cause any computational overhead, as reasoning in DLP< has exactly the same complexity as reasoning in disjunctive logic programming. This is confirmed by the existence of an efficient translation from DLP< to plain disjunctive logic programming. Using this translation, an advanced KR system supporting the DLP< language has been implemented on top of the DLV system and has subsequently been integrated into DLV.Comment: 28 pages; will be published in Theory and Practice of Logic Programmin

    On Properties of Update Sequences Based on Causal Rejection

    Full text link
    We consider an approach to update nonmonotonic knowledge bases represented as extended logic programs under answer set semantics. New information is incorporated into the current knowledge base subject to a causal rejection principle enforcing that, in case of conflicts, more recent rules are preferred and older rules are overridden. Such a rejection principle is also exploited in other approaches to update logic programs, e.g., in dynamic logic programming by Alferes et al. We give a thorough analysis of properties of our approach, to get a better understanding of the causal rejection principle. We review postulates for update and revision operators from the area of theory change and nonmonotonic reasoning, and some new properties are considered as well. We then consider refinements of our semantics which incorporate a notion of minimality of change. As well, we investigate the relationship to other approaches, showing that our approach is semantically equivalent to inheritance programs by Buccafurri et al. and that it coincides with certain classes of dynamic logic programs, for which we provide characterizations in terms of graph conditions. Therefore, most of our results about properties of causal rejection principle apply to these approaches as well. Finally, we deal with computational complexity of our approach, and outline how the update semantics and its refinements can be implemented on top of existing logic programming engines.Comment: 59 pages, 2 figures, 3 tables, to be published in "Theory and Practice of Logic Programming

    Nonmonotonic Behavior Demonstrated by Stable

    Get PDF
    Nonmonotonic reasoning is a critical feature that robust reasoning systems must possess. Another important feature that robust reasoning systems must possess is the ability to reason about collections of objects (i.e., sets.) Logic programming presents us with a very powerful paradigm within which to represent and reason about knowledge. Developments in this field over recent years allow us to reason nonmonotonically, and allow us to reason about sets. Of the semantics introduced over recent years to allow logic programs to reason about sets, Stable{} is the newest and most expressive (i.e., comprehensive) approach to date. This paper examines the nonmonotonicity of Stable{}
    • …
    corecore