1,142 research outputs found

    Nonmonotonic Probabilistic Logics between Model-Theoretic Probabilistic Logic and Probabilistic Logic under Coherence

    Full text link
    Recently, it has been shown that probabilistic entailment under coherence is weaker than model-theoretic probabilistic entailment. Moreover, probabilistic entailment under coherence is a generalization of default entailment in System P. In this paper, we continue this line of research by presenting probabilistic generalizations of more sophisticated notions of classical default entailment that lie between model-theoretic probabilistic entailment and probabilistic entailment under coherence. That is, the new formalisms properly generalize their counterparts in classical default reasoning, they are weaker than model-theoretic probabilistic entailment, and they are stronger than probabilistic entailment under coherence. The new formalisms are useful especially for handling probabilistic inconsistencies related to conditioning on zero events. They can also be applied for probabilistic belief revision. More generally, in the same spirit as a similar previous paper, this paper sheds light on exciting new formalisms for probabilistic reasoning beyond the well-known standard ones.Comment: 10 pages; in Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR-2002), Special Session on Uncertainty Frameworks in Nonmonotonic Reasoning, pages 265-274, Toulouse, France, April 200

    Probabilistic Default Reasoning with Conditional Constraints

    Full text link
    We propose a combination of probabilistic reasoning from conditional constraints with approaches to default reasoning from conditional knowledge bases. In detail, we generalize the notions of Pearl's entailment in system Z, Lehmann's lexicographic entailment, and Geffner's conditional entailment to conditional constraints. We give some examples that show that the new notions of z-, lexicographic, and conditional entailment have similar properties like their classical counterparts. Moreover, we show that the new notions of z-, lexicographic, and conditional entailment are proper generalizations of both their classical counterparts and the classical notion of logical entailment for conditional constraints.Comment: 8 pages; to appear in Proceedings of the Eighth International Workshop on Nonmonotonic Reasoning, Special Session on Uncertainty Frameworks in Nonmonotonic Reasoning, Breckenridge, Colorado, USA, 9-11 April 200

    Probabilistic entailment in the setting of coherence: The role of quasi conjunction and inclusion relation

    Full text link
    In this paper, by adopting a coherence-based probabilistic approach to default reasoning, we focus the study on the logical operation of quasi conjunction and the Goodman-Nguyen inclusion relation for conditional events. We recall that quasi conjunction is a basic notion for defining consistency of conditional knowledge bases. By deepening some results given in a previous paper we show that, given any finite family of conditional events F and any nonempty subset S of F, the family F p-entails the quasi conjunction C(S); then, given any conditional event E|H, we analyze the equivalence between p-entailment of E|H from F and p-entailment of E|H from C(S), where S is some nonempty subset of F. We also illustrate some alternative theorems related with p-consistency and p-entailment. Finally, we deepen the study of the connections between the notions of p-entailment and inclusion relation by introducing for a pair (F,E|H) the (possibly empty) class K of the subsets S of F such that C(S) implies E|H. We show that the class K satisfies many properties; in particular K is additive and has a greatest element which can be determined by applying a suitable algorithm

    Coping with the Limitations of Rational Inference in the Framework of Possibility Theory

    Full text link
    Possibility theory offers a framework where both Lehmann's "preferential inference" and the more productive (but less cautious) "rational closure inference" can be represented. However, there are situations where the second inference does not provide expected results either because it cannot produce them, or even provide counter-intuitive conclusions. This state of facts is not due to the principle of selecting a unique ordering of interpretations (which can be encoded by one possibility distribution), but rather to the absence of constraints expressing pieces of knowledge we have implicitly in mind. It is advocated in this paper that constraints induced by independence information can help finding the right ordering of interpretations. In particular, independence constraints can be systematically assumed with respect to formulas composed of literals which do not appear in the conditional knowledge base, or for default rules with respect to situations which are "normal" according to the other default rules in the base. The notion of independence which is used can be easily expressed in the qualitative setting of possibility theory. Moreover, when a counter-intuitive plausible conclusion of a set of defaults, is in its rational closure, but not in its preferential closure, it is always possible to repair the set of defaults so as to produce the desired conclusion.Comment: Appears in Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI1996

    Precise Propagation of Upper and Lower Probability Bounds in System P

    Full text link
    In this paper we consider the inference rules of System P in the framework of coherent imprecise probabilistic assessments. Exploiting our algorithms, we propagate the lower and upper probability bounds associated with the conditional assertions of a given knowledge base, automatically obtaining the precise probability bounds for the derived conclusions of the inference rules. This allows a more flexible and realistic use of System P in default reasoning and provides an exact illustration of the degradation of the inference rules when interpreted in probabilistic terms. We also examine the disjunctive Weak Rational Monotony of System P+ proposed by Adams in his extended probability logic.Comment: 8 pages -8th Intl. Workshop on Non-Monotonic Reasoning NMR'2000, April 9-11, Breckenridge, Colorad

    A Plausibility Semantics for Abstract Argumentation Frameworks

    Get PDF
    We propose and investigate a simple ranking-measure-based extension semantics for abstract argumentation frameworks based on their generic instantiation by default knowledge bases and the ranking construction semantics for default reasoning. In this context, we consider the path from structured to logical to shallow semantic instantiations. The resulting well-justified JZ-extension semantics diverges from more traditional approaches.Comment: Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014). This is an improved and extended version of the author's ECSQARU 2013 pape

    Numerical Representations of Acceptance

    Full text link
    Accepting a proposition means that our confidence in this proposition is strictly greater than the confidence in its negation. This paper investigates the subclass of uncertainty measures, expressing confidence, that capture the idea of acceptance, what we call acceptance functions. Due to the monotonicity property of confidence measures, the acceptance of a proposition entails the acceptance of any of its logical consequences. In agreement with the idea that a belief set (in the sense of Gardenfors) must be closed under logical consequence, it is also required that the separate acceptance o two propositions entail the acceptance of their conjunction. Necessity (and possibility) measures agree with this view of acceptance while probability and belief functions generally do not. General properties of acceptance functions are estabilished. The motivation behind this work is the investigation of a setting for belief revision more general than the one proposed by Alchourron, Gardenfors and Makinson, in connection with the notion of conditioning.Comment: Appears in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI1995
    • …
    corecore