356 research outputs found

    A unified approach for the identification of SISO/MIMO Wiener and Hammerstein systems

    Get PDF
    Hammerstein and Wiener models are nonlinear representations of systems composed by the coupling of a static nonlinearity N and a linear system L in the form N-L and L-N respectively. These models can represent real processes which made them popular in the last decades. The problem of identifying the static nonlinearity and linear system is not a trivial task, and has attracted a lot of research interest. It has been studied in the available literature either for Hammerstein or Wiener systems, and either in a discrete-time or continuous-time setting. The objective of this paper is to present a uni ed framework for the identification of these systems that is valid for SISO and MIMO systems, discrete and continuous-time setting, and with the only a priori knowledge that the system is either Wiener or Hammerstein.Preprin

    Neural System Identification with Spike-triggered Non-negative Matrix Factorization

    Get PDF
    Neuronal circuits formed in the brain are complex with intricate connection patterns. Such complexity is also observed in the retina as a relatively simple neuronal circuit. A retinal ganglion cell receives excitatory inputs from neurons in previous layers as driving forces to fire spikes. Analytical methods are required that can decipher these components in a systematic manner. Recently a method termed spike-triggered non-negative matrix factorization (STNMF) has been proposed for this purpose. In this study, we extend the scope of the STNMF method. By using the retinal ganglion cell as a model system, we show that STNMF can detect various computational properties of upstream bipolar cells, including spatial receptive field, temporal filter, and transfer nonlinearity. In addition, we recover synaptic connection strengths from the weight matrix of STNMF. Furthermore, we show that STNMF can separate spikes of a ganglion cell into a few subsets of spikes where each subset is contributed by one presynaptic bipolar cell. Taken together, these results corroborate that STNMF is a useful method for deciphering the structure of neuronal circuits.Comment: updated versio

    Steps and bumps: precision extraction of discrete states of molecular machines using physically-based, high-throughput time series analysis

    Get PDF
    We report new statistical time-series analysis tools providing significant improvements in the rapid, precision extraction of discrete state dynamics from large databases of experimental observations of molecular machines. By building physical knowledge and statistical innovations into analysis tools, we demonstrate new techniques for recovering discrete state transitions buried in highly correlated molecular noise. We demonstrate the effectiveness of our approach on simulated and real examples of step-like rotation of the bacterial flagellar motor and the F1-ATPase enzyme. We show that our method can clearly identify molecular steps, symmetries and cascaded processes that are too weak for existing algorithms to detect, and can do so much faster than existing algorithms. Our techniques represent a major advance in the drive towards automated, precision, highthroughput studies of molecular machine dynamics. Modular, open-source software that implements these techniques is provided at http://www.eng.ox.ac.uk/samp/members/max/software

    System approach to robust acoustic echo cancellation through semi-blind source separation based on independent component analysis

    Get PDF
    We live in a dynamic world full of noises and interferences. The conventional acoustic echo cancellation (AEC) framework based on the least mean square (LMS) algorithm by itself lacks the ability to handle many secondary signals that interfere with the adaptive filtering process, e.g., local speech and background noise. In this dissertation, we build a foundation for what we refer to as the system approach to signal enhancement as we focus on the AEC problem. We first propose the residual echo enhancement (REE) technique that utilizes the error recovery nonlinearity (ERN) to "enhances" the filter estimation error prior to the filter adaptation. The single-channel AEC problem can be viewed as a special case of semi-blind source separation (SBSS) where one of the source signals is partially known, i.e., the far-end microphone signal that generates the near-end acoustic echo. SBSS optimized via independent component analysis (ICA) leads to the system combination of the LMS algorithm with the ERN that allows for continuous and stable adaptation even during double talk. Second, we extend the system perspective to the decorrelation problem for AEC, where we show that the REE procedure can be applied effectively in a multi-channel AEC (MCAEC) setting to indirectly assist the recovery of lost AEC performance due to inter-channel correlation, known generally as the "non-uniqueness" problem. We develop a novel, computationally efficient technique of frequency-domain resampling (FDR) that effectively alleviates the non-uniqueness problem directly while introducing minimal distortion to signal quality and statistics. We also apply the system approach to the multi-delay filter (MDF) that suffers from the inter-block correlation problem. Finally, we generalize the MCAEC problem in the SBSS framework and discuss many issues related to the implementation of an SBSS system. We propose a constrained batch-online implementation of SBSS that stabilizes the convergence behavior even in the worst case scenario of a single far-end talker along with the non-uniqueness condition on the far-end mixing system. The proposed techniques are developed from a pragmatic standpoint, motivated by real-world problems in acoustic and audio signal processing. Generalization of the orthogonality principle to the system level of an AEC problem allows us to relate AEC to source separation that seeks to maximize the independence, hence implicitly the orthogonality, not only between the error signal and the far-end signal, but rather, among all signals involved. The system approach, for which the REE paradigm is just one realization, enables the encompassing of many traditional signal enhancement techniques in analytically consistent yet practically effective manner for solving the enhancement problem in a very noisy and disruptive acoustic mixing environment.PhDCommittee Chair: Biing-Hwang Juang; Committee Member: Brani Vidakovic; Committee Member: David V. Anderson; Committee Member: Jeff S. Shamma; Committee Member: Xiaoli M
    corecore