112 research outputs found

    Fuzzy-enhanced Dual-loop Control Strategy for Precise Nanopositioning

    Get PDF
    Postprin

    A Modified Positive Velocity and Position Feedback scheme with delay compensation for improved nanopositioning performance

    Get PDF
    Acknowledgments This paper was sponsored by the Spanish FPU12/00984 Program (Ministerio de Educacion, Cultura y Deporte). It was also sponsored by the Spanish Government Research Program with the Project DPI2012-37062-CO2-01 (Ministerio de Economia y Competitividad) and by the European Social Fund.Peer reviewedPostprin

    Improvement of accuracy and speed of a commercial AFM using Positive Position Feedback control

    Get PDF
    The atomic force microscope (AFM) is a device capable of generating topographic images of sample surfaces with extremely high resolutions down to the atomic level. It is also being used in applications that involve manipulation of matter at a nanoscale. Early AFMs were operated in open loop. As a result, they were susceptible to piezoelectric creep, thermal drift, hysteresis nonlinearity and scan-induced vibration. These effects tend to distort the generated image. The distortions are often minimized by limiting the scanning speed and range of the AFMs. Recently a new generation of AFMs has emerged that utilizes position sensors to measure displacements of the scanner in three dimensions. These AFMs are equipped with feedback loops that work to minimize the adverse effects of hysteresis, piezoelectric creep and thermal drift on the obtained image using standard PI controllers. These feedback controllers are often not designed to deal with the highly resonant nature of an AFM's scanner, nor with the cross-coupling between various axes. In this paper we illustrate the drastic improvement in accuracy and imaging speed that can be obtained by proper design of a feedback controller. Such controllers can be incorporated into most modern AFMs with minimal effort since they can be implemented in software with the existing hardware

    Improvement in the Imaging Performance of Atomic Force Microscopy: A Survey

    Get PDF
    Nanotechnology is the branch of science which deals with the manipulation of matters at an extremely high resolution down to the atomic level. In recent years, atomic force microscopy (AFM) has proven to be extremely versatile as an investigative tool in this field. The imaging performance of AFMs is hindered by: 1) the complex behavior of piezo materials, such as vibrations due to the lightly damped low-frequency resonant modes, inherent hysteresis, and creep nonlinearities; 2) the cross-coupling effect caused by the piezoelectric tube scanner (PTS); 3) the limited bandwidth of the probe; 4) the limitations of the conventional raster scanning method using a triangular reference signal; 5) the limited bandwidth of the proportional-integral controllers used in AFMs; 6) the offset, noise, and limited sensitivity of position sensors and photodetectors; and 7) the limited sampling rate of the AFM's measurement unit. Due to these limitations, an AFM has a high spatial but low temporal resolution, i.e., its imaging is slow, e.g., an image frame of a living cell takes up to 120 s, which means that rapid biological processes that occur in seconds cannot be studied using commercially available AFMs. There is a need to perform fast scans using an AFM with nanoscale accuracy. This paper presents a survey of the literature, presents an overview of a few emerging innovative solutions in AFM imaging, and proposes future research directions.This work was supported in part by the Australian Research Council (ARC) under Grant FL11010002 and Grant DP160101121 and the UNSW Canberra under a Rector's Visiting Fellowshi

    A monolithic MEMS position sensor for closed-loop high-speed atomic force microscopy

    Get PDF
    The accuracy and repeatability of atomic force microscopy (AFM) imaging significantly depend on the accuracy of the piezoactuator. However, nonlinear properties of piezoactuators can distort the image, necessitating sensor-based closed-loop actuators to achieve high accuracy AFM imaging. The advent of high-speed AFM has made the requirements on the position sensors in such a system even more stringent, requiring higher bandwidths and lower sensor mass than traditional sensors can provide. In this paper, we demonstrate a way for high-speed, high-precision closed-loop AFM nanopositioning using a novel, miniaturized micro-electro-mechanical system position sensor in conjunction with a simple PID controller. The sensor was developed to respond to the need for small, lightweight, high-bandwidth, long-range and sub-nm-resolution position measurements in high-speed AFM applications. We demonstrate the use of this sensor for closed-loop operation of conventional as well as high-speed AFM operation to provide distortion-free images. The presented implementation of this closed-loop approach allows for positioning precision down to 2.1 Å, reduces the integral nonlinearity to below 0.2%, and allows for accurate closed loop imaging at line rates up to 300 Hz

    Nanopositionnement 3D à base de mesure à courant tunnel et piezo-actionnement

    Get PDF
    The objective of this thesis was to elaborate high performance control strategies and their real-time validation on a tunneling current-based 3D nanopositioning system developed in GIPSA-lab. The thesis lies in the domain of micro-/nano mechatronic systems (MEMS) focused on applications of fast and precise positioning and scanning tunneling microscopy (STM). More precisely, the aim is to position the metallic tunneling tip (like in STM) over the metallic surface using piezoelectric actuators in X, Y and Z directions and actuated micro-cantilever (like in Atomic Force Microscope AFM), electrostatically driven in Z direction, with high precision, over possibly high bandwidth. However, the presence of different adverse effects appearing at such small scale (e.g. measurement noise, nonlinearities of different nature, cross-couplings, vibrations) strongly affect the overall performance of the 3D system. Therefore a high performance control is needed. To that end, a novel 3D model of the system has been developed and appropriate control methods for such a system have been elaborated. First the focus is on horizontal X and Y directions. The nonlinear hysteresis and creep effects exhibited by piezoelectric actuators have been compensated and a comparison between different compensation methods is provided. Modern SISO and MIMO robust control methods are next used to reduce high frequency effects of piezo vibration and cross-couplings between X and Y axes. Next, the horizontal motion is combined with the vertical one (Z axis) with tunneling current and micro-cantilever control. Illustrative experimental results for 3D nanopositioning of tunneling tip, as well as simulation results for surface topography reconstruction and multi-mode cantilever positioning, are finally given.L'objectif de la thèse est l'élaboration de lois de commande de haute performance et leur validation en temps réel sur une plateforme expérimentale 3D de nano-positionnement à base de courant à effet tunnel, développée au laboratoire GIPSA-lab. Elle s'inscrit donc dans le cadre des systèmes micro-/nano-mécatronique (MEMS), et de la commande. Plus précisément, le principal enjeu considéré est de positionner la pointe métallique à effet tunnel (comme en microscopie à effet tunnel STM) contre la surface métallique en utilisant des actionneurs piézoélectriques en X, Y et Z et un micro-levier (comme en microscopie à force atomique AFM) actionné électrostatiquement en Z avec une grande précision et une bande passante élevée. Cependant, la présence de différents effets indésirables apparaissant à cette petite échelle (comme le bruit de mesure, des non-linéarités de natures différentes, les couplages, les vibrations) affectent fortement la performance globale du système 3D. En conséquence, une commande de haute performance est nécessaire. Pour cela, un nouveau modèle 3D du système a été développé et des méthodes de contrôle appropriées pour un tel système ont été élaborées. Tout d'abord l'accent est mis sur de positionnement selon les axes X et Y. Les effets d'hystérésis et de fluage non linéaires présents dans les actionneurs piézoélectriques ont été compensés et une comparaison entre les différentes méthodes de compensation est effectuée. Des techniques modernes de commande robuste SISO et MIMO sont ensuite utilisées pour réduire les effets des vibrations piézoélectriques et des couplages entre les axes X et Y. Le mouvement horizontal est alors combiné avec le mouvement vertical (Axe Z) et une commande du courant tunnel et du micro-levier. Des résultats expérimentaux illustrent le nano positionnement 3D de la pointe, et des résultats de simulation pour la reconstruction de la topographie de la surface ainsi que le positionnement du micro-levier à base d'un modèle multi-modes

    Fractional Repetitive Control of Nanopositioning Stages for High-Speed Scanning Using Low-Pass FIR Variable Fractional Delay Filter

    Get PDF
    This work was supported by the National Natural Science Foundation of China under Grant 51975375, the Binks Trust Visiting Research Fellowship (2018) (University of Aberdeen, UK) awarded to Dr. Sumeet S. Aphale and the SJTU overseas study grant awarded to Linlin Li. The authors would like to thank Mr. Wulin Yan for his assistance with the experiments.Peer reviewedPostprin

    Fuzzy PID Feedback Control of Piezoelectric Actuator with Feedforward Compensation

    Get PDF
    Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to derive and not suitable for practical application, a digital inverse model is established based on the input and output data of a piezoelectric actuator. Moreover, to mitigate the compensation error of the feedforward control, a feedback control scheme is implemented using different types of control algorithms in terms of PID control, fuzzy control, and fuzzy PID control. Extensive simulation studies are carried out using the three kinds of control systems. Comparative investigation reveals that the fuzzy PID control system with feedforward compensation is capable of providing quicker response and better control accuracy than the other two ones. It provides a promising way of precision control for piezoelectric actuator

    Calibration and Nonlinearity Compensation for Force Application in AFM based Nanomanipulation

    Get PDF
    Abstract — Both the extent and accuracy of force application in atomic force microscope (AFM) nanomanipulation are significantly limited by the nonlinearity of the commonly used optical lever with a nonlinear position-sensitive detector (PSD). In order to compensate the nonlinearity of the optical lever, a nonlinear calibration method is presented. This method applies the nonlinear curve fit to a full-range position-voltage response of the photodiode, obtaining a continuous function of its voltagerelated sensitivity. Thus, Interaction forces can be defined as integrals of this sensitivity function between any two responses of photodiode voltage outputs, instead of rough transformation with a single conversion factor. The lateral position-voltage response of the photodiode, a universally acknowledged puzzle, was directly characterized by an accurately calibrated force sensor composed of a tippless piezoresistive force sensor, regardless of any knowledge of the cantilevers and laser measuring system. Experiments using a rectangular cantilever (normal force constant 0.24 N/m) demonstrated that the proposed nonlinear calibration method restrained the sensitivity error of normal position-voltage responses to 3.6 % and extended the force application range. Index Terms — Atomic force microscope, nanomanipulation, force calibration, nonlinearity compensation. I
    corecore