1,051 research outputs found

    Ultrafast Optical Signal Processing with Bragg Structures

    Full text link
    The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.Comment: To be published in a special issue of journal Applied Sciences, on the topic of Guided-Wave Optic

    Anderson localization of entangled photons in an integrated quantum walk

    Full text link
    Waves fail to propagate in random media. First predicted for quantum particles in the presence of a disordered potential, Anderson localization has been observed also in classical acoustics, electromagnetism and optics. Here, for the first time, we report the observation of Anderson localization of pairs of entangled photons in a two-particle discrete quantum walk affected by position dependent disorder. A quantum walk on a disordered lattice is realized by an integrated array of interferometers fabricated in glass by femtosecond laser writing. A novel technique is used to introduce a controlled phase shift into each unit mesh of the network. Polarization entanglement is exploited to simulate the different symmetries of the two-walker system. We are thus able to experimentally investigate the genuine effect of (bosonic and fermionic) statistics in the absence of interaction between the particles. We will show how different types of randomness and the symmetry of the wave-function affect the localization of the entangled walkers.Comment: 7 pages, 5 figures, revised version published on Nature Photonics 7, 322-328 (2013

    Gradient Optics of subwavelength nanofilms

    Get PDF
    Propagation and tunneling of light through subwavelength photonic barriers, formed by dielectric layers with continuous spatial variations of dielectric susceptibility across the film are considered. Effects of giant heterogeneity-induced non-local dispersion, both normal and anomalous, are examined by means of a series of exact analytical solutions of Maxwell equations for gradient media. Generalized Fresnel formulae, visualizing a profound influence of gradient and curvature of dielectric susceptibility profiles on reflectance/transmittance of periodical photonic heterostructures are presented. Depending on the cutoff frequency of the barrier, governed by technologically managed spatial profile of its refractive index, propagation or tunneling of light through these barriers are examined. Nonattenuative transfer of EM energy by evanescent waves, tunneling through dielectric gradient barriers, characterized by real values of refractive index, decreasing in the depth of medium, is shown. Scaling of the obtained results for different spectral ranges of visible, IR and THz waves is illustrated. Potential of gradient optical structures for design of miniaturized filters, polarizers and frequency-selective interfaces of subwavelength thickness is considered
    • …
    corecore