10,873 research outputs found

    Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks

    Get PDF
    Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard RNN models may be an over-simplification of what real neuronal networks compute. Here, we suggest that the RNN approach may be made both neurobiologically more plausible and computationally more powerful by its fusion with Bayesian inference techniques for nonlinear dynamical systems. In this scheme, we use an RNN as a generative model of dynamic input caused by the environment, e.g. of speech or kinematics. Given this generative RNN model, we derive Bayesian update equations that can decode its output. Critically, these updates define a 'recognizing RNN' (rRNN), in which neurons compute and exchange prediction and prediction error messages. The rRNN has several desirable features that a conventional RNN does not have, for example, fast decoding of dynamic stimuli and robustness to initial conditions and noise. Furthermore, it implements a predictive coding scheme for dynamic inputs. We suggest that the Bayesian inversion of recurrent neural networks may be useful both as a model of brain function and as a machine learning tool. We illustrate the use of the rRNN by an application to the online decoding (i.e. recognition) of human kinematics

    Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data

    Full text link
    Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. More recently, as deep learning models have become more common, RNNs have been used to forecast increasingly complicated systems. Dynamical spatio-temporal processes represent a class of complex systems that can potentially benefit from these types of models. Although the RNN literature is expansive and highly developed, uncertainty quantification is often ignored. Even when considered, the uncertainty is generally quantified without the use of a rigorous framework, such as a fully Bayesian setting. Here we attempt to quantify uncertainty in a more formal framework while maintaining the forecast accuracy that makes these models appealing, by presenting a Bayesian RNN model for nonlinear spatio-temporal forecasting. Additionally, we make simple modifications to the basic RNN to help accommodate the unique nature of nonlinear spatio-temporal data. The proposed model is applied to a Lorenz simulation and two real-world nonlinear spatio-temporal forecasting applications

    The Neural Particle Filter

    Get PDF
    The robust estimation of dynamically changing features, such as the position of prey, is one of the hallmarks of perception. On an abstract, algorithmic level, nonlinear Bayesian filtering, i.e. the estimation of temporally changing signals based on the history of observations, provides a mathematical framework for dynamic perception in real time. Since the general, nonlinear filtering problem is analytically intractable, particle filters are considered among the most powerful approaches to approximating the solution numerically. Yet, these algorithms prevalently rely on importance weights, and thus it remains an unresolved question how the brain could implement such an inference strategy with a neuronal population. Here, we propose the Neural Particle Filter (NPF), a weight-less particle filter that can be interpreted as the neuronal dynamics of a recurrently connected neural network that receives feed-forward input from sensory neurons and represents the posterior probability distribution in terms of samples. Specifically, this algorithm bridges the gap between the computational task of online state estimation and an implementation that allows networks of neurons in the brain to perform nonlinear Bayesian filtering. The model captures not only the properties of temporal and multisensory integration according to Bayesian statistics, but also allows online learning with a maximum likelihood approach. With an example from multisensory integration, we demonstrate that the numerical performance of the model is adequate to account for both filtering and identification problems. Due to the weightless approach, our algorithm alleviates the 'curse of dimensionality' and thus outperforms conventional, weighted particle filters in higher dimensions for a limited number of particles

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro

    Online Natural Gradient as a Kalman Filter

    Full text link
    We cast Amari's natural gradient in statistical learning as a specific case of Kalman filtering. Namely, applying an extended Kalman filter to estimate a fixed unknown parameter of a probabilistic model from a series of observations, is rigorously equivalent to estimating this parameter via an online stochastic natural gradient descent on the log-likelihood of the observations. In the i.i.d. case, this relation is a consequence of the "information filter" phrasing of the extended Kalman filter. In the recurrent (state space, non-i.i.d.) case, we prove that the joint Kalman filter over states and parameters is a natural gradient on top of real-time recurrent learning (RTRL), a classical algorithm to train recurrent models. This exact algebraic correspondence provides relevant interpretations for natural gradient hyperparameters such as learning rates or initialization and regularization of the Fisher information matrix.Comment: 3rd version: expanded intr
    corecore