4,764 research outputs found

    Dynamics simulation of human box delivering task

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2018The dynamic optimization of a box delivery motion is a complex task. The key component is to achieve an optimized motion associated with the box weight, delivering speed, and location. This thesis addresses one solution for determining the optimal delivery of a box. The delivering task is divided into five subtasks: lifting, transition step, carrying, transition step, and unloading. Each task is simulated independently with appropriate boundary conditions so that they can be stitched together to render a complete delivering task. Each task is formulated as an optimization problem. The design variables are joint angle profiles. For lifting and carrying task, the objective function is the dynamic effort. The unloading task is a byproduct of the lifting task, but done in reverse, starting with holding the box and ending with it at its final position. In contrast, for transition task, the objective function is the combination of dynamic effort and joint discomfort. The various joint parameters are analyzed consisting of joint torque, joint angles, and ground reactive forces. A viable optimization motion is generated from the simulation results. It is also empirically validated. This research holds significance for professions containing heavy box lifting and delivering tasks and would like to reduce the chance of injury.Chapter 1 Introduction -- Chapter 2 Skeletal Human Modeling -- Chapter 3 Kinematics and Dynamics -- Chapter 4 Lifting Simulation -- Chapter 5 Carrying Simulation -- Chapter 6 Delivering Simulation -- Chapter 7 Conclusion and Future Research -- Reference

    Development and Biomechanical Analysis toward a Mechanically Passive Wearable Shoulder Exoskeleton

    Get PDF
    Shoulder disability is a prevalent health issue associated with various orthopedic and neurological conditions, like rotator cuff tear and peripheral nerve injury. Many individuals with shoulder disability experience mild to moderate impairment and struggle with elevating the shoulder or holding the arm against gravity. To address this clinical need, I have focused my research on developing wearable passive exoskeletons that provide continuous at-home movement assistance. Through a combination of experiments and computational tools, I aim to optimize the design of these exoskeletons. In pursuit of this goal, I have designed, fabricated, and preliminarily evaluated a wearable, passive, cam-driven shoulder exoskeleton prototype. Notably, the exoskeleton features a modular spring-cam-wheel module, allowing customizable assistive force to compensate for different proportions of the shoulder elevation moment due to gravity. The results of my research demonstrated that this exoskeleton, providing modest one-fourth gravity moment compensation at the shoulder, can effectively reduce muscle activity, including deltoid and rotator cuff muscles. One crucial aspect of passive shoulder exoskeleton design is determining the optimal anti-gravity assistance level. I have addressed this challenge using computational tools and found that an assistance level within the range of 20-30% of the maximum gravity torque at the shoulder joint yields superior performance for specific shoulder functional tasks. When facing a new task dynamic, such as wearing a passive shoulder exoskeleton, the human neuro-musculoskeletal system adapts and modulates limb impedance at the end-limb (i.e., hand) to enhance task stability. I have presented development and validation of a realistic neuromusculoskeletal model of the upper limb that can predict stiffness modulation and motor adaptation in response to newly introduced environments and force fields. Future studies will explore the model\u27s applicability in predicting stiffness modulation for 3D movements in novel environments, such as passive assistive devices\u27 force fields

    Model-Based Estimation of Muscle Forces Exerted During Movements

    Get PDF
    Estimation of individual muscle forces during human movement can provide insight into neural control and tissue loading and can thus contribute to improved diagnosis and management of both neurological and orthopaedic conditions. Direct measurement of muscle forces is generally not feasible in a clinical setting, and non-invasive methods based on musculoskeletal modeling should therefore be considered. The current state of the art in clinical movement analysis is that resultant joint torques can be reliably estimated from motion data and external forces (inverse dynamic analysis). Static optimization methods to transform joint torques into estimates of individual muscle forces using musculoskeletal models, have been known for several decades. To date however, none of these methods have been successfully translated into clinical practice. The main obstacles are the lack of studies reporting successful validation of muscle force estimates, and the lack of user-friendly and efficient computer software. Recent advances in forward dynamics methods have opened up new opportunities. Forward dynamic optimization can be performed such that solutions are less dependent on measured kinematics and ground reaction forces, and are consistent with additional knowledge, such as the force–length–velocity–activation relationships of the muscles, and with observed electromyography signals during movement. We conclude that clinical applications of current research should be encouraged, supported by further development of computational tools and research into new algorithms for muscle force estimation and their validation

    Range-based techniques for discovering optimality and analyzing scaling relationships in neuromechanical systems

    Get PDF
    In this paper, a method for decoupling the neuromuscular function of a set of limbs from the role morphology plays in regulating the performance of an activity is introduced. This method is based on two previous methods: the rescaled range analysis specific to time series data, and the use of scaling laws. A review of the literature suggests that limb geometry can either facilitate or constrain performance as measured experimentally. Whether limb geometry is facilitatory or acts as a constraint depends on the size differential between arm morphology and the underlying muscle. "Changes in size and shape" are theoretically extrapolations of morphological geometry to other members of a population or species, to other species, or to technological manipulations of an individual via prosthetic devices. Three datasets are analyzed using the range-based method and a Monte-Carlo simulation, and are used to test the various ways of executing this analysis. It was found that when performance is kept stable but limb size and shape is scaled by a factor of .25, the greatest gain in performance results. It was also found that introducing force-based perturbations results in 'shifts' in the body geometry/performance relationship. While results such as this could be interpreted as a statistical artifact, the non-linear rise within a measurement class and linear decrease between measurement classes suggests an effect of scale in the optimality of this relationship. Overall, range-based techniques allow for the simulation and modeling of myriad changes in phenotype that result from biological and technological manipulation

    Temporal Structure of Support Surface Translations Drive the Temporal Structure of Postural Control During Standing

    Get PDF
    A healthy biological system is characterized by a temporal structure that exhibits fractal properties and is highly complex. Unhealthy systems demonstrate lowered complexity and either greater or less predictability in the temporal structure of a time series. The purpose of this research was to determine if support surface translations with different temporal structures would affect the temporal structure of the center of pressure (COP) signal. Eight healthy young participants stood on a force platform that was translated in the anteroposterior direction for input conditions of varying complexity: white noise, pink noise, brown noise, and sine wave. Detrended fluctuation analysis was used to characterize the long-range correlations of the COP time series in the AP direction. Repeated measures ANOVA revealed differences among conditions (p \u3c 0.001). The less complex support surface translations resulted in a less complex COP compared to normal standing. A quadratic trend analysis demonstrated an inverted-u shape across an increasing order of predictability of the conditions (p \u3c 0.001). The ability to influence the complexity of postural control through support surface translations can have important implications for rehabilitation

    Spinal lordosis optimizes the requirements for a stable erect posture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally.</p> <p>Results</p> <p>We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA) of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability.</p> <p>Conclusions</p> <p>We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment.</p

    A Robust Nonlinear Control Strategy for Unsupported Paraplegic Standing Using Functional Electrical Stimulation: Controller Synthesis and Simulation

    Get PDF
    Background: Functional electrical stimulation (FES) is known as a promising technique for movement generation in the paralyzed limbs through electrical stimulation of the muscle nerves. This paper focuses on the FES based control of upright standing in paraplegic patients. In this study a new approach for controlling the upright posture has been proposed. The posture control strategies proposed in the previous works were based on controlling the angular joint position, and none of them were focused on controlling the CoP dynamics directly. Since the CoP is representative of posture balance dynamics, in this study the adopted FES based control strategy was designed to control the CoP dynamics directly.Method: In the proposed strategy, the controller has determined the stimulation intensity of ankle muscles in a manner to restrict the center of pressure (CoP) in a specific zone to guarantee the posture balance during unsupported standing. The proposed approach is based on a new cooperative based combination between two different controllers. Utilizing this strategy, until the CoP is confined within the stable zone, an adaptive controller is active and tries to preserve the posture stability. When the CoP goes out the stable zone, sliding mode control, as a nonlinear control technique presenting remarkable properties of robustness, is activated and tries to back the CoP within the preference zone. In this manner, not only the posture balance can be guaranteed but also the balance dynamics can be similar to the elicited dynamic postural behavior in the normal subjects.Results: Extended evaluations carried out through the simulation studies on a musculoskeletal model. According to the achieved results, the proposed control strategy is not only robust against the external disturbances but also insensitive to the initial postural conditions.Conclusion: The achieved results prove the acceptable performance of the proposed control strategy
    corecore