195 research outputs found

    Application of Fuzzy control algorithms for electric vehicle antilock braking/traction control systems

    Get PDF
    Abstract—The application of fuzzy-based control strategies has recently gained enormous recognition as an approach for the rapid development of effective controllers for nonlinear time-variant systems. This paper describes the preliminary research and implementation of a fuzzy logic based controller to control the wheel slip for electric vehicle antilock braking systems (ABSs). As the dynamics of the braking systems are highly nonlinear and time variant, fuzzy control offers potential as an important tool for development of robust traction control. Simulation studies are employed to derive an initial rule base that is then tested on an experimental test facility representing the dynamics of a braking system. The test facility is composed of an induction machine load operating in the generating region. It is shown that the torque-slip characteristics of an induction motor provides a convenient platform for simulating a variety of tire/road - driving conditions, negating the initial requirement for skid-pan trials when developing algorithms. The fuzzy membership functions were subsequently refined by analysis of the data acquired from the test facility while simulating operation at a high coefficient of friction. The robustness of the fuzzy-logic slip regulator is further tested by applying the resulting controller over a wide range of operating conditions. The results indicate that ABS/traction control may substantially improve longitudinal performance and offer significant potential for optimal control of driven wheels, especially under icy conditions where classical ABS/traction control schemes are constrained to operate very conservatively

    Dynamic Control Applied to a Laboratory Antilock Braking System

    Get PDF
    The control of an antilock braking system is a difficult problem due to the existence of nonlinear dynamics and uncertainties of its characteristics. To overcome these issues, in this work, a dynamic nonlinear controller is proposed, based on a nonlinear observer. To evaluate its performance, this controller has been implemented on an ABS Laboratory setup, representing a quarter car model. The nonlinear observer reconstructs some of the state variables of the setup, assumed not measurable, to establish a fair benchmark for an ABS system of a real automobile. The dynamic controller ensures exponential convergence of the state estimation, as well as robustness with respect to parameter variations

    Adaptive optimal slip ratio estimator for effective braking on a non-uniform condition road

    Get PDF
    In this paper, an adaptive algorithm is developed which senses the road condition change and estimates a (time-varying) optimal braking slip ratio. This is conducted by two on-line simultaneously operating tire-road friction-curve slope calculators: one based on the accelerometer output and the other based on the wheel speed. The required vehicle speed is estimated using a robust sliding-mode observer. Enforcement of the online optimal braking reference is left to an adaptive sliding mode controller to cope with the system strong nonlinearity, time dependency and the speed and friction-coefficient estimation errors. The algorithm is applied to a half model car and the braking performance is examined. The results indicate that the proposed algorithm substantially reduces the stopping time and distance. The performance of the algorithm is verified using different vehicle initial speeds and especially non-uniform road condition where 8% improvement versus the nonadaptive optimal slip ratio algorithm is recorded

    Sliding Mode Measurement Feedback Control for Antilock Braking Systems

    Full text link
    We describe a nonlinear observer-based design for control of vehicle traction that is important in providing safety and obtaining desired longitudinal vehicle motion. First, a robust sliding mode controller is designed to maintain the wheel slip at any given value. Simulations show that longitudinal traction controller is capable of controlling the vehicle with parameter deviations and disturbances. The direct state feedback is then replaced with nonlinear observers to estimate the vehicle velocity from the output of the system (i.e., wheel velocity). The nonlinear model of the system is shown locally observable. The effects and drawbacks of the extended Kalman filters and sliding observers are shown via simulations. The sliding observer is found promising while the extended Kalman filter is unsatisfactory due to unpredictable changes in the road condition

    An ABS control logic based on wheel force measurement

    Get PDF
    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficien

    Time-Varying Sliding Mode Control for ABS Control of an Electric Car

    Get PDF
    Controller design for the Anti-Lock Braking System (ABS) of a wheeled vehicle is a challenging task because of the complex and nonlinear nature of the tyre-road interaction. An efficient ABS controller should be capable of maintaining the wheel slip at an optimal value, which is suitable for the particular road conditions experienced at a given instant in time, preventing the wheel from locking while braking. Many controller designs in the literature track either an optimal slip which is assumed constant or are not supported by experimental validation or simulation testing with higher order models. This paper first presents an ABS system based on a conventional Sliding Mode Control (SMC). The performance of this controller is tested on an experimental vehicle. The results are compared with simulation results obtained with both a quarter car model and a full-car model built in the Matlab/Simulink environment. The performance of this controller is improved by effective state estimation using a Sliding Mode Differentiator (SMD) where the results are benchmarked with an implementation using an Extended Kalman Filter (EKF). The paper then presents a controller based on Time-Varying Sliding Mode Control (TV-SMC) which tracks an optimal slip trajectory

    DIAGRAMS, FUNCTIONAL AND CONSTRUCTIVE SOLUTIONS OF THE STABILITY CONTROL SYSTEMS FOR AUTOMOTIVE APPLICATION

    Get PDF
    The modern car must correspond to certain requirements regarding the driver safety and more than that it must convince the potential buyer that it will offer him the safety he is so much in need of. For that reason the number and the diversity of the safety systems have increased so fast. Despite all this for the time being it can not be stated that a particular vehicle is totally safe and it can come through any difficult situation. Because of that the research in the field is carried on and the number of those who propose solutions mend to improve the vehicle behavior is getting bigger.active safety, vehicle, control

    State and parameter estimator design for control of vehicle suspension system

    Get PDF
    Modern vehicle stability and navigational systems are mostly designed using inaccurate bicycle models to approximate the full-car models. This results in incomplete models with various unknown parameters and states being neglected in the controller and navigation system design processes. Earlier estimation algorithms using the bicycle models are simpler but have many undefined parameters and states that are crucial for proper stability control. For existing vehicle navigation systems, direct line of sight for satellite access is required but is limited in modern cities with many high-rise buildings and therefore, an inertial navigation system utilizing accurate estimation of these parameters is needed. The aim of this research is to estimate the parameters and states of the vehicle more accurately using a multivariable and complex full-car model. This will enhance the stability of the vehicle and can provide a more consistent navigation. The proposed method uses the kinematics estimation model formulated using special orthogonal SO3 group to design estimators for vehicles velocity, attitude and suspension states. These estimators are used to modify the existing antilock braking system (ABS) scheme by incorporating the dynamic velocity estimation to reduce the stopping distance. Meanwhile the semi-active suspension system includes suspension velocity and displacement states to reduce the suspension displacements and velocities. They are also used in the direct yaw control (DYC) scheme to include mass and attitude changes to reduce the lateral velocity and slips. Meanwhile in the navigation system, the 3-dimensional attitude effects can improve the position accuracy. With these approaches, the stopping distance in the ABS has been reduced by one meter and the vehicle states required for inertial navigation are more accurately estimated. The results for high speed lane change test indicate that the vehicle is 34% more stable and 16% better ride comfort on rough terrains due to the proposed DYC and the active suspension system control. The methods proposed can be utilized in future autonomous car design. This research is therefore an important contribution in shaping the future of vehicle driving, comfort and stability
    • 

    corecore