19,754 research outputs found

    Neurodynamic approaches to model predictive control.

    Get PDF
    Pan, Yunpeng.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (p. 98-107).Abstract also in Chinese.Abstract --- p.ip.iiiAcknowledgement --- p.ivChapter 1 --- Introduction --- p.2Chapter 1.1 --- Model Predictive Control --- p.2Chapter 1.2 --- Neural Networks --- p.3Chapter 1.3 --- Existing studies --- p.6Chapter 1.4 --- Thesis structure --- p.7Chapter 2 --- Two Recurrent Neural Networks Approaches to Linear Model Predictive Control --- p.9Chapter 2.1 --- Problem Formulation --- p.9Chapter 2.1.1 --- Quadratic Programming Formulation --- p.10Chapter 2.1.2 --- Linear Programming Formulation --- p.13Chapter 2.2 --- Neural Network Approaches --- p.15Chapter 2.2.1 --- Neural Network Model 1 --- p.15Chapter 2.2.2 --- Neural Network Model 2 --- p.16Chapter 2.2.3 --- Control Scheme --- p.17Chapter 2.3 --- Simulation Results --- p.18Chapter 3 --- Model Predictive Control for Nonlinear Affine Systems Based on the Simplified Dual Neural Network --- p.22Chapter 3.1 --- Problem Formulation --- p.22Chapter 3.2 --- A Neural Network Approach --- p.25Chapter 3.2.1 --- The Simplified Dual Network --- p.26Chapter 3.2.2 --- RNN-based MPC Scheme --- p.28Chapter 3.3 --- Simulation Results --- p.28Chapter 3.3.1 --- Example 1 --- p.28Chapter 3.3.2 --- Example 2 --- p.29Chapter 3.3.3 --- Example 3 --- p.33Chapter 4 --- Nonlinear Model Predictive Control Using a Recurrent Neural Network --- p.36Chapter 4.1 --- Problem Formulation --- p.36Chapter 4.2 --- A Recurrent Neural Network Approach --- p.40Chapter 4.2.1 --- Neural Network Model --- p.40Chapter 4.2.2 --- Learning Algorithm --- p.41Chapter 4.2.3 --- Control Scheme --- p.41Chapter 4.3 --- Application to Mobile Robot Tracking --- p.42Chapter 4.3.1 --- Example 1 --- p.44Chapter 4.3/2 --- Example 2 --- p.44Chapter 4.3.3 --- Example 3 --- p.46Chapter 4.3.4 --- Example 4 --- p.48Chapter 5 --- Model Predictive Control of Unknown Nonlinear Dynamic Sys- tems Based on Recurrent Neural Networks --- p.50Chapter 5.1 --- MPC System Description --- p.51Chapter 5.1.1 --- Model Predictive Control --- p.51Chapter 5.1.2 --- Dynamical System Identification --- p.52Chapter 5.2 --- Problem Formulation --- p.54Chapter 5.3 --- Dynamic Optimization --- p.58Chapter 5.3.1 --- The Simplified Dual Neural Network --- p.59Chapter 5.3.2 --- A Recursive Learning Algorithm --- p.60Chapter 5.3.3 --- Convergence Analysis --- p.61Chapter 5.4 --- RNN-based MPC Scheme --- p.65Chapter 5.5 --- Simulation Results --- p.67Chapter 5.5.1 --- Example 1 --- p.67Chapter 5.5.2 --- Example 2 --- p.68Chapter 5.5.3 --- Example 3 --- p.76Chapter 6 --- Model Predictive Control for Systems With Bounded Uncertainties Using a Discrete-Time Recurrent Neural Network --- p.81Chapter 6.1 --- Problem Formulation --- p.82Chapter 6.1.1 --- Process Model --- p.82Chapter 6.1.2 --- Robust. MPC Design --- p.82Chapter 6.2 --- Recurrent Neural Network Approach --- p.86Chapter 6.2.1 --- Neural Network Model --- p.86Chapter 6.2.2 --- Convergence Analysis --- p.88Chapter 6.2.3 --- Control Scheme --- p.90Chapter 6.3 --- Simulation Results --- p.91Chapter 7 --- Summary and future works --- p.95Chapter 7.1 --- Summary --- p.95Chapter 7.2 --- Future works --- p.96Bibliography --- p.9

    Nonlinear system identification for predictive control using continuous time recurrent neural networks and automatic differentiation

    Get PDF
    In this paper, a continuous time recurrent neural network (CTRNN) is developed to be used in nonlinear model predictive control (NMPC) context. The neural network represented in a general nonlinear state-space form is used to predict the future dynamic behavior of the nonlinear process in real time. An efficient training algorithm for the proposed network is developed using automatic differentiation (AD) techniques. By automatically generating Taylor coefficients, the algorithm not only solves the differentiation equations of the network but also produces the sensitivity for the training problem. The same approach is also used to solve the online optimization problem in the predictive controller. The proposed neural network and the nonlinear predictive controller were tested on an evaporation case study. A good model fitting for the nonlinear plant is obtained using the new method. A comparison with other approaches shows that the new algorithm can considerably reduce network training time and improve solution accuracy. The CTRNN trained is used as an internal model in a predictive controller and results in good performance under different operating conditions

    Autonomous Autorotation of a Tilt-Rotor Aircraft Using Model Predictive Control

    Get PDF
    Tilt rotor vehicles are governed by FAA laws also used for conventional helicopters, which require autorotational maneuvering and landing given a total power failure. With low inertia rotors and high disk loading of tilt rotor vehicles, this already difficult task becomes significantly more challenging. In this work, a model predictive controller is developed to autonomously maneuver and land a tilt rotor given complete power loss. A high fidelity model of a tilt rotor vehicle is created and used to simulate the vehicle dynamics and response to control inputs. A reduced order dynamic model is used within a model predictive control algorithm to predict vehicle states on a receding horizon and optimize the control inputs. Constraint and cost functions are designed to promote reliable nonlinear optimization using a recurrent neural network. Simulation results show that the controller works in both normal operation states and in power-off autorotation

    Applications of recurrent neural networks in batch reactors. Part II: Nonlinear inverse and predictive control of the heat transfer fluid temperature

    Get PDF
    Although nonlinear inverse and predictive control techniques based on artificial neural networks have been extensively applied to nonlinear systems, their use in real time applications is generally limited. In this paper neural inverse and predictive control systems have been applied to the real-time control of the heat transfer fluid temperature in a pilot chemical reactor. The training of the inverse control system is carried out using both generalised and specialised learning. This allows the preparation of weights of the controller acting in real-time and appropriate performances of inverse neural controller can be achieved. The predictive control system makes use of a neural network to calculate the control action. Thus, the problems related to the high computational effort involved in nonlinear model-predictive control systems are reduced. The performance of the neural controllers is compared against the self-tuning PID controller currently installed in the plant. The results show that neural-based controllers improve the performance of the real plant.Publicad

    Energy rating of a water pumping station using multivariate analysis

    Get PDF
    Among water management policies, the preservation and the saving of energy demand in water supply and treatment systems play key roles. When focusing on energy, the customary metric to determine the performance of water supply systems is linked to the definition of component-based energy indicators. This approach is unfit to account for interactions occurring among system elements or between the system and its environment. On the other hand, the development of information technology has led to the availability of increasing large amount of data, typically gathered from distributed sensor networks in so-called smart grids. In this context, data intensive methodologies address the possibility of using complex network modeling approaches, and advocate the issues related to the interpretation and analysis of large amount of data produced by smart sensor networks. In this perspective, the present work aims to use data intensive techniques in the energy analysis of a water management network. The purpose is to provide new metrics for the energy rating of the system and to be able to provide insights into the dynamics of its operations. The study applies neural network as a tool to predict energy demand, when using flowrate and vibration data as predictor variables
    • …
    corecore