50 research outputs found

    Wave energy control: status and perspectives 2020

    Get PDF
    Wave energy has a significant part to play in providing a carbon-free solution to the world’s increasing appetite for energy. In many countries, there is sufficient wave energy to cater for the entire national demand, and wave energy also has some attractive features in being relatively uncorrelated with wind, solar and tidal energy, easing the renewable energy dispatch problem. However, wave energy has not yet reached commercial viability, despite the first device designs being proposed in 1898. Control technology can play a major part in the drive for economic viability of wave energy and this paper charts the progress made since the first wave energy control systems were suggested in the 1970s, and examines current outstanding challenges for the control community

    Optimal control of wave energy systems considering nonlinear Froude–Krylov effects: control-oriented modelling and moment-based control

    Get PDF
    Motivated by the relevance of so-called nonlinear Froude–Krylov (FK) hydrodynamic effects in the accurate dynamical description of wave energy converters (WECs) under controlled conditions, and the apparent lack of a suitable control framework effectively capable of optimally harvesting ocean wave energy in such circumstances, we present, in this paper, an integrated framework to achieve such a control objective, by means of two main contributions. We first propose a data-based, control-oriented, modelling procedure, able to compute a suitable mathematical representation for nonlinear FK effects, fully compatible with state-of-the-art control procedures. Secondly, we propose a moment-based optimal control solution, capable of transcribing the energy-maximising optimal control problem for WECs subject to nonlinear FK effects, by incorporating the corresponding data-based FK model via moment-based theory, with real-time capabilities. We illustrate the application of the proposed framework, including energy absorption performance, by means of a comprehensive case study, comprising both the data-based modelling, and the optimal moment-based control of a heaving point absorber WEC subject to nonlinear FK force

    A control design framework for wave energy devices

    Get PDF
    This paper presents an integrated framework for the design of wave energy control systems, considering the totality of the design process as well as any ancillary functions required, such as model reduction, excitation force estimation, etc. In particular, we propose the moment-based mathematical framework as an integrated environment which allows a smooth transition between modelling and control activities, as well as providing a framework to consider optimal rejection of modelling errors or errors in excitation force estimation. The paper provides an overview of the framework, also containing an illustrative case study to demonstrate a likely pathway through the framewor

    Robust Optimal Control of Wave Energy Converters Based on Adaptive Dynamic Programming

    Get PDF

    Nonlinear energy-maximising optimal control of wave energy systems: A moment-based approach

    Get PDF
    Linear dynamics are virtually always assumed when designing optimal controllers for wave energy converters (WECs), motivated by both their simplicity and computational convenience. Nevertheless, unlike traditional tracking control applications, the assumptions under which the linearization of WEC models is performed are challenged by the energy-maximizing controller itself, which intrinsically enhances device motion to maximize power extraction from incoming ocean waves. \GSIn this article, we present a moment-based energy-maximizing control strategy for WECs subject to nonlinear dynamics. We develop a framework under which the objective function (and system variables) can be mapped to a finite-dimensional tractable nonlinear program, which can be efficiently solved using state-of-the-art nonlinear programming solvers. Moreover, we show that the objective function belongs to a class of generalized convex functions when mapped to the moment domain, guaranteeing the existence of a global energy-maximizing solution and giving explicit conditions for when a local solution is, effectively, a global maximizer. The performance of the strategy is demonstrated through a case study, where we consider (state and input-constrained) energy maximization for a state-of-the-art CorPower-like WEC, subject to different hydrodynamic nonlinearities

    Feedback noncausal model predictive control of wave energy converters

    Get PDF
    In this paper, a novel feedback noncausal model predictive control (MPC) strategy for sea wave energy converters (WECs) is proposed, where the wave prediction information can be explicitly incorporated into the MPC strategy to improve the WEC control performance. The main novelties of the MPC strategy proposed in this paper include: (i) the recursive feasibility and robust constraints satisfaction are guaranteed without a significant increase in the computational burden; (ii) the information of short-term wave prediction is incorporated into the feedback noncausal MPC method to maximise the potential energy output; (iii) the sea condition for the WEC to safely operate in can be explicitly calculated. The proposed feedback noncausal MPC algorithm can also be extended to a wide class of control design problems, especially to the energy maximisation problems with constraints to be satisfied and subject to persistent but predictable disturbances. Numerical simulations are provided to show the efficacy of the proposed feedback noncausal MPC

    Adaptive Model Predictive Control of Wave Energy Converters

    Get PDF
    corecore