31,862 research outputs found

    From quantum pulse gate to quantum pulse shaper -- enigneered frequency conversion in nonlinear optical waveguides

    Full text link
    Full control over the spatio-temporal structure of quantum states of light is an important goal in quantum optics, to generate for instance single-mode quantum pulses or to encode information on multiple modes, enhancing channel capacities. Quantum light pulses feature an inherent, rich spectral broadband-mode structure. In recent years, exploring the use of integrated optics as well as source-engineering has led to a deep understanding of the pulse-mode structure of guided quantum states of light. In addition, several groups have started to investigate the manipulation of quantum states by means of single-photon frequency conversion. In this paper we explore new routes towards complete control of the inherent pulse-modes of ultrafast pulsed quantum states by employing specifically designed nonlinear waveguides with adapted dispersion properties. Starting from our recently proposed quantum pulse gate (QPG) we further generalize the concept of spatio-spectral engineering for arbitrary \chitwo-based quantum processes. We analyse the sum-frequency generation based QPG and introduce the difference-frequency generation based quantum pulse shaper (QPS). Together, these versatile and robust integrated optics devices allow for arbitrary manipulations of the pulse-mode structure of ultrafast pulsed quantum states. The QPG can be utilized to select an arbitrary pulse mode from a multimode input state, whereas the QPS enables the generation of specific pulse modes from an input wavepacket with Gaussian-shaped spectrum.Comment: 21 pages, 9 figure

    Measuring gravitational waves from binary black hole coalescences: I. Signal to noise for inspiral, merger, and ringdown

    Get PDF
    We estimate the expected signal-to-noise ratios (SNRs) from the three phases (inspiral,merger,ringdown) of coalescing binary black holes (BBHs) for initial and advanced ground-based interferometers (LIGO/VIRGO) and for space-based interferometers (LISA). LIGO/VIRGO can do moderate SNR (a few tens), moderate accuracy studies of BBH coalescences in the mass range of a few to about 2000 solar masses; LISA can do high SNR (of order 10^4) high accuracy studies in the mass range of about 10^5 to 10^8 solar masses. BBHs might well be the first sources detected by LIGO/VIRGO: they are visible to much larger distances (up to 500 Mpc by initial interferometers) than coalescing neutron star binaries (heretofore regarded as the "bread and butter" workhorse source for LIGO/VIRGO, visible to about 30 Mpc by initial interferometers). Low-mass BBHs (up to 50 solar masses for initial LIGO interferometers; 100 for advanced; 10^6 for LISA) are best searched for via their well-understood inspiral waves; higher mass BBHs must be searched for via their poorly understood merger waves and/or their well-understood ringdown waves. A matched filtering search for massive BBHs based on ringdown waves should be capable of finding BBHs in the mass range of about 100 to 700 solar masses out to 200 Mpc (initial LIGO interferometers), and 200 to 3000 solar masses out to about z=1 (advanced interferometers). The required number of templates is of order 6000 or less. Searches based on merger waves could increase the number of detected massive BBHs by a factor of order 10 or more over those found from inspiral and ringdown waves, without detailed knowledge of the waveform shapes, using a "noise monitoring" search algorithm. A full set of merger templates from numerical relativity could further increase the number of detected BBHs by an additional factor of up to 4.Comment: 40 pages, Revtex, psfig.tex, seven figures, submitted to Phys Rev

    Two-photon interference between disparate sources for quantum networking

    Get PDF
    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80+/-4%, which paves the way to hybrid universal quantum networks

    Independent high-purity photons created in domain-engineered crystals

    Full text link
    Advanced photonic quantum technology relies on multi-photon interference which requires bright sources of high-purity single photons. Here, we implement a novel domain-engineering technique for tailoring the nonlinearity of a parametric down-conversion crystal. We create pairs of independently-heralded telecom-wavelength photons and achieve high heralding, brightness and spectral purities without filtering.Comment: 8 pages, 5 figures Imprecise comparison with the experimental results in [28] has been remove

    Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    Get PDF
    We present a new measurement of the kinematic Sunyaev-Zeldovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zeldovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.Comment: 15 pages, 8 figures, 2 table

    Bright filter-free source of indistinguishable photon pairs

    Full text link
    We demonstrate a high-brightness source of pairs of indistinguishable photons based on a type-II phase-matched doubly-resonant optical parametric oscillator operated far below threshold. The cavity-enhanced down-conversion output of a PPKTP crystal is coupled into two single-mode fibers with a mode coupling efficiency of 58%. The high degree of indistinguishability between the photons of a pair is demonstrated by a Hong-Ou-Mandel interference visibility of higher than 90% without any filtering at an instantaneous coincidence rate of 450 000 pairs/s per mW of pump power per nm of down-conversion bandwidth. For the degenerate spectral mode with a linewidth of 7 MHz at 795 nm a rate of 70 pairs/(s mW MHz) is estimated, increasing the spectral brightness for indistinguishable photons by two orders of magnitude compared to similar previous sources.Comment: 7 pages, 3 figure

    Generation of spatially pure photon pairs in a multimode nonlinear waveguide using intermodal dispersion

    Full text link
    We present experimental realization of type-II spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate (KTiOPO4) nonlinear waveguide. We demonstrate that by careful exploitation of intermodal dispersion in the waveguide it is feasible to produce photon pairs in well defined transverse modes without any additional spatial filtering at the output. Spatial characteristics is verified by measurements of the M2 beam quality factors. We also prepared a postselected polarization-entangled two-photon state shown to violate Bell's inequality. Similar techniques based on intermodal dispersion can be used to generate spatial entanglement and hyperentanglement.Comment: 11 pages, 5 figures, submitted to Proceedings of Quantum Communications and Quantum Imaging X Conference at SPIE 2012 Optics + Photonics, San Diego, 12-16 August 201
    corecore