279 research outputs found

    Fuzzy Logic-based Terminal Guidance with Impact Angle Control

    Get PDF
    This paper presents a new formulation of terminal guidance law which controls the impactattitude angle while minimising the miss distance.  The formulation is based on the fuzzy logic-control approach.  Unlike many prevalent designs, the proposed guidance law does not requirelinearisation of missile-target engagement model. Numerical simulation results demonstrate thatthe proposed guidance law offers satisfactory performance, fulfilling its design goals

    Iterative Learning Control for homing guidance design of missiles

    Get PDF
    This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is appreciated with respect to a previous published base controller for comparison, this strategy, which is simple to realize, is able to reduce the time to reach the head-on condition to target destruction. This fact is important to minimize the missile lateral force-level to fulfill engaging in hypersonic target persecutions.Peer ReviewedPostprint (published version

    Design of Second-Order Sliding Mode Guidance Law Based on the Nonhomogeneous Disturbance Observer

    Get PDF
    Considering the guidance problem of relative motion of missile target without the dynamic characteristics of missile autopilot in the interception planar, non-homogeneous disturbance observer is applied for finite-time estimation with respect to the target maneuvering affecting the guidance performance. Two guidance laws with finite-time convergence are designed by using a fast power rate reaching law and the prescribed sliding variable dynamics. The nonsingular terminal sliding mode surface is selected to improve dynamic characteristics of missile autopilot. Furthermore, the finite-time guidance law with dynamic delay characteristics is designed for the target maneuvering through adopting variable structure dynamic compensation. The simulation results demonstrate that, for different target maneuvering, the proposed guidance laws can restrain the sliding mode chattering problem effectively and make the missile hit the maneuvering target quickly and accurately with condition of corresponding assumptions

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Integrated Optimal and Robust Control of Spacecraft in Proximity Operations

    Get PDF
    With the rapid growth of space activities and advancement of aerospace science and technology, many autonomous space missions have been proliferating in recent decades. Control of spacecraft in proximity operations is of great importance to accomplish these missions. The research in this dissertation aims to provide a precise, efficient, optimal, and robust controller to ensure successful spacecraft proximity operations. This is a challenging control task since the problem involves highly nonlinear dynamics including translational motion, rotational motion, and flexible structure deformation and vibration. In addition, uncertainties in the system modeling parameters and disturbances make the precise control more difficult. Four control design approaches are integrated to solve this challenging problem. The first approach is to consider the spacecraft rigid body translational and rotational dynamics together with the flexible motion in one unified optimal control framework so that the overall system performance and constraints can be addressed in one optimization process. The second approach is to formulate the robust control objectives into the optimal control cost function and prove the equivalency between the robust stabilization problem and the transformed optimal control problem. The third approach is to employ the è-D technique, a novel optimal control method that is based on a perturbation solution to the Hamilton-Jacobi-Bellman equation, to solve the nonlinear optimal control problem obtained from the indirect robust control formulation. The resultant optimal control law can be obtained in closedorm, and thus facilitates the onboard implementation. The integration of these three approaches is called the integrated indirect robust control scheme. The fourth approach is to use the inverse optimal adaptive control method combined with the indirect robust control scheme to alleviate the conservativeness of the indirect robust control scheme by using online parameter estimation such that adaptive, robust, and optimal properties can all be achieved. To show the effectiveness of the proposed control approaches, six degree-offreedom spacecraft proximity operation simulation is conducted and demonstrates satisfying performance under various uncertainties and disturbances

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    Advances in Spacecraft Systems and Orbit Determination

    Get PDF
    "Advances in Spacecraft Systems and Orbit Determinations", discusses the development of new technologies and the limitations of the present technology, used for interplanetary missions. Various experts have contributed to develop the bridge between present limitations and technology growth to overcome the limitations. Key features of this book inform us about the orbit determination techniques based on a smooth research based on astrophysics. The book also provides a detailed overview on Spacecraft Systems including reliability of low-cost AOCS, sliding mode controlling and a new view on attitude controller design based on sliding mode, with thrusters. It also provides a technological roadmap for HVAC optimization. The book also gives an excellent overview of resolving the difficulties for interplanetary missions with the comparison of present technologies and new advancements. Overall, this will be very much interesting book to explore the roadmap of technological growth in spacecraft systems

    Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms

    Get PDF
    This book is a reprint of the Special Issue “Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms”,which was published in Applied Sciences

    Investigations of Model-Free Sliding Mode Control Algorithms including Application to Autonomous Quadrotor Flight

    Get PDF
    Sliding mode control is a robust nonlinear control algorithm that has been used to implement tracking controllers for unmanned aircraft systems that are robust to modeling uncertainty and exogenous disturbances, thereby providing excellent performance for autonomous operation. A significant advance in the application of sliding mode control for unmanned aircraft systems would be adaptation of a model-free sliding mode control algorithm, since the most complex and time-consuming aspect of implementation of sliding mode control is the derivation of the control law with incorporation of the system model, a process required to be performed for each individual application of sliding mode control. The performance of four different model-free sliding mode control algorithms was compared in simulation using a variety of aerial system models and real-world disturbances (e.g. the effects of discretization and state estimation). The two best performing algorithms were shown to exhibit very similar behavior. These two algorithms were implemented on a quadrotor (both in simulation and using real-world hardware) and the performance was compared to a traditional PID-based controller using the same state estimation algorithm and control setup. Simulation results show the model-free sliding mode control algorithms exhibit similar performance to PID controllers without the tedious tuning process. Comparison between the two model-free sliding mode control algorithms showed very similar performance as measured by the quadratic means of tracking errors. Flight testing showed that while a model-free sliding mode control algorithm is capable of controlling realworld hardware, further characterization and significant improvements are required before it is a viable alternative to conventional control algorithms. Large tracking errors were observed for both the model-free sliding mode control and PID based flight controllers and the performance was characterized as unacceptable for most applications. The poor performance of both controllers suggests tracking errors could be attributed to errors in state estimation, which effectively introduce unknown dynamics into the feedback loop. Further testing with improved state estimation would allow for more conclusions to be drawn about the performance characteristics of the model-free sliding mode control algorithms
    corecore