250 research outputs found

    Modeling, Control, and Hardware Development of a Thrust-Vector Coaxial UAV

    Get PDF
    This thesis introduces a unique thrust vector coaxial unmanned aerial vehicle (UAV) configuration and presents a comprehensive investigation encompassing dynamics modeling, hardware design, and controller development. Using the Newton-Euler method, a dynamic model for the UAV is derived to gain in-depth insights into its fundamental flight characteristics. A simple thrust model is formulated and modified by comparing it with data obtained from vehicle testing. The feasibility of manufacturing such a vehicle is assessed through the development of a hardware prototype. Finally, a linear state feedback controller is designed and evaluated using the non-linear dynamics model. The results demonstrate successful validation of the hardware through flight tests. The initial thrust model is enhanced by two methods, incorporating correction factors derived from a regression line, and employing the system identification method based on the test stand data. Implementation of the linear state feedback controller effectively maintains attitude authority over a non-linear simulation of the vehicle. The limits of the controller are explored, and simulation highlights that the controller\u27s authority fails if the operating states deviate from the linearized region of attraction. Beyond the specific thrust vector coaxial UAV configuration, this research holds implications for enhancing UAV dynamics modeling, analysis, and control in broader applications

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    Design and fabrication of coaxial micro helicopter

    Get PDF
    In this thesis the design of a coaxial micro helicopter is presented and based on the design, a model is fabricated. The thesis starts with the introduction on the previous models of micro helicopters like the Coax and the Epson. The different configurations of the micro helicopters in use are discussed and a detailed introduction on the principle of working of the coaxial configuration of helicopters is presented using the principle of conservation of angular momentum. The advantages and disadvantages of the coaxial configuration over other configurations are then given. The design process starts with the identification of the individual mechanical and electrical parts. The working of the mechanical and electrical components is individually discussed and their necessity for the fabrication process is explained. Further, the mechanical parts are designed and assembled using CATIA V5R17. Then, the model of the coaxial helicopter is fabricated and is successfully flown by remote control mechanism. The individual forces acting on the rotor blades of the fabricated model are identified and their directions are defined. By using standard equations, the values of the individual forces are calculated for the rotor blades as well as for the entire helicopter body.Using the values of the forces obtained on the rotor blades, a static analysis is presented using ANSYS. Finally, the conclusions and inferences arising in course of the work are presented and the references used in this work are mentioned

    Rotary-wing MAV Modeling & Control for indoor scenarios

    Get PDF
    This paper is about modeling and control of Miniature Aerial Vehicles ¿MAVs for indoor scenarios, specially using, micro coaxial and quadrotor systems. Mathematical models for simulation and control are introduced and subsequently applied to the commercial aircraft: the DraganFlyer quadrotor and the Micro-Mosquito coaxial flying vehicle. The MAVs have been hardware-modified in order to perform experimental autonomous flight. A novel approach for control based on Hybrid Backstepping and the Frenet-Serret theory is used for attitude stabilization (Backstepping+FST), introducing a desired attitude angle acceleration function dependent on aircraft velocity. Results of autonomous hovering and tracking are presented based on the scheme we propose for control and attitude stabilization when MAV is maneuvering at moderate speeds

    SwarMAV: A Swarm of Miniature Aerial Vehicles

    Get PDF
    As the MAV (Micro or Miniature Aerial Vehicles) field matures, we expect to see that the platform's degree of autonomy, the information exchange, and the coordination with other manned and unmanned actors, will become at least as crucial as its aerodynamic design. The project described in this paper explores some aspects of a particularly exciting possible avenue of development: an autonomous swarm of MAVs which exploits its inherent reliability (through redundancy), and its ability to exchange information among the members, in order to cope with a dynamically changing environment and achieve its mission. We describe the successful realization of a prototype experimental platform weighing only 75g, and outline a strategy for the automatic design of a suitable controller

    Mini-quadrotor Attitude Control based on Hybrid Backstepping & Frenet-Serret Theory

    Full text link
    This paper is about modeling and control of miniature quadrotors, with a special emphasis on attitude control. Mathematical models for simulation and nonlinear control approaches are introduced and subsequently applied to commercial aircraft: the DraganFlyer quadrotor, which has been hardware-modified in order to perform experimental autonomous flying. Hybrid Backstepping control and the Frenet-Serret theory is used for attitude stabilization, introducing a desired attitude angle acceleration function dependent on aircraft velocity. Finally, improvements on disturbance rejection and attitude tracking at moderate aircraft speeds are validated through various simulation scenarios (indoor navigation based on camera tracking), and flight experiments conducted on the DraganFlyer quadroto

    Model-based Design Development and Control of a Wind Resistant Multirotor UAV

    Get PDF
    Multirotor UAVs have in recent years become a trend among academics, engineers and hobbyists alike due to their mechanical simplicity and availability. Commercial uses range from surveillance to recreational flight with plenty of research being conducted in regards to design and control. With applications towards search and rescue missions in mind, the main objective of this thesis work is the development of a mechanical design and control algorithm aimed at maximizing wind resistance. To these ends, an advanced multirotor simulator, based on helicopter theory, has been developed to give an accurate description of the flight dynamics. Controllers are then designed and tuned to stabilize the attitude and position of the UAV followed by a discussion regarding disturbance attenuation. In order to study the impact of different design setups, the UAV model is constructed so that physical properties can be scaled. Parameter influence is then investigated for a specified wind test using a Design of Experiments methodology. These results are combined with a concept generation process and evaluated with a control engineering approach. It was concluded that the proposed final design should incorporate a compact three-armed airframe with six rotors configured coaxially
    corecore