52,802 research outputs found

    Strongly nonlinear dynamics of electrolytes in large ac voltages

    Get PDF
    We study the response of a model micro-electrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two novel features - significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasi-equilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination", since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.Comment: 30 pages, 17 eps-figures, RevTe

    Magnetic Diffusion in Star Formation

    Full text link
    Magnetic diffusion plays a vital role in star formation. We trace its influence from interstellar cloud scales down to star-disk scales. On both scales, we find that magnetic diffusion can be significantly enhanced by the buildup of strong gradients in magnetic field structure. Large scale nonlinear flows can create compressed cloud layers within which ambipolar diffusion occurs rapidly. However, in the flux-freezing limit that may be applicable to photoionized molecular cloud envelopes, supersonic motions can persist for long times if driven by an externally generated magnetic field that corresponds to a subcritical mass-to-flux ratio. In the case of protostellar accretion, rapid magnetic diffusion (through Ohmic dissipation with additional support from ambipolar diffusion) near the protostar causes dramatic magnetic flux loss. By doing so, it also allows the formation of a centrifugal disk, thereby avoiding the magnetic braking catastrophe.Comment: 5 pages, 4 figures. Conference proceedings of IAU Symposium 270, Computational Star Formation (eds. Alves, Elmegreen, Girart, Trimble

    Sharp Interface Limits of the Cahn-Hilliard Equation with Degenerate Mobility

    Full text link
    In this work, the sharp interface limit of the degenerate Cahn-Hilliard equation (in two space dimensions) with a polynomial double well free energy and a quadratic mobility is derived via a matched asymptotic analysis involving exponentially large and small terms and multiple inner layers. In contrast to some results found in the literature, our analysis reveals that the interface motion is driven by a combination of surface diffusion flux proportional to the surface Laplacian of the interface curvature and an additional contribution from nonlinear, porous-medium type bulk diffusion, For higher degenerate mobilities, bulk diffusion is subdominant. The sharp interface models are corroborated by comparing relaxation rates of perturbations to a radially symmetric stationary state with those obtained by the phase field model.Comment: 27 pages, 2 figure

    Gyro-induced acceleration of magnetic reconnection

    Get PDF
    The linear and nonlinear evolution of magnetic reconnection in collisionless high-temperature plasmas with a strong guide field is analyzed on the basis of a two-dimensional gyrofluid model. The linear growth rate of the reconnecting instability is compared to analytical calculations over the whole spectrum of linearly unstable wave numbers. In the strongly unstable regime (large \Delta '), the nonlinear evolution of the reconnecting instability is found to undergo two distinctive acceleration phases separated by a stall phase in which the instantaneous growth rate decreases. The first acceleration phase is caused by the formation of strong electric fields close to the X-point due to ion gyration, while the second acceleration phase is driven by the development of an open Petschek-like configuration due to both ion and electron temperature effects. Furthermore, the maximum instantaneous growth rate is found to increase dramatically over its linear value for decreasing diffusion layers. This is a consequence of the fact that the peak instantaneous growth rate becomes weakly dependent on the microscopic plasma parameters if the diffusion region thickness is sufficiently smaller than the equilibrium magnetic field scale length. When this condition is satisfied, the peak reconnection rate asymptotes to a constant value.Comment: Accepted for publication on Physics of Plasma

    Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes

    Full text link
    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by super-capacitors, water desalination and purification by capacitive deionization (or desalination), and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory in the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) In the "super-capacitor regime" of small voltages and/or early times where the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore. (ii) In the "desalination regime" of large voltages and long times, the porous electrode slowly adsorbs neutral salt, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration
    • …
    corecore