70,659 research outputs found

    Nonlinear Parabolic Equations arising in Mathematical Finance

    Full text link
    This survey paper is focused on qualitative and numerical analyses of fully nonlinear partial differential equations of parabolic type arising in financial mathematics. The main purpose is to review various non-linear extensions of the classical Black-Scholes theory for pricing financial instruments, as well as models of stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman (HJB) equation. After suitable transformations, both problems can be represented by solutions to nonlinear parabolic equations. Qualitative analysis will be focused on issues concerning the existence and uniqueness of solutions. In the numerical part we discuss a stable finite-volume and finite difference schemes for solving fully nonlinear parabolic equations.Comment: arXiv admin note: substantial text overlap with arXiv:1603.0387

    A multigrid method for elliptic grid generation using compact schemes

    Get PDF
    Traditional iterative methods are stalling numerical processes, in which the error has relatively small changes from one iteration to the next. Multigrid methods overcome the limitations of iterative methods and are computationally efficient. Convergence of iterative methods for elliptic partial differential equations is extremely slow. In particular, the convergence of the non-linear elliptic Poisson grid generation equations used for elliptic grid generation is very slow. Multigrid methods are fast converging methods when applied to elliptic partial differential equations. In this dissertation, a non-linear multigrid algorithm is used to accelerate the convergence of the non-linear elliptic Poisson grid generation method. The non-linear multigrid algorithm alters the performance characteristics of the non-linear elliptic Poisson grid generation method making it robust and fast in convergence. The elliptic grid generation method is based on the use of a composite mapping. It consists of a nonlinear transfinite algebraic transformation and an elliptic transformation. The composite mapping is a differentiable one-to-one mapping from the computational space onto the domains. Compact finite difference schemes are used for the discretization of the grid generation equations. Compared to traditional schemes, compact finite difference schemes provide better representation of shorter length scales and this feature brings them closer to spectral methods

    Numerical solution methods for fractional partial differential equations

    Get PDF
    Fractional partial differential equations have been developed in many different fields such as physics, finance, fluid mechanics, viscoelasticity, engineering and biology. These models are used to describe anomalous diffusion. The main feature of these equations is their nonlocal property, due to the fractional derivative, which makes their solution challenging. However, analytic solutions of the fractional partial differential equations either do not exist or involve special functions, such as the Fox (H-function) function (Mathai & Saxena 1978) and the Mittag-Leffler function (Podlubny 1998) which are diffcult to evaluate. Consequently, numerical techniques are required to find the solution of fractional partial differential equations. This thesis can be considered as two parts, the first part considers the approximation of the Riemann-Liouville fractional derivative and the second part develops numerical techniques for the solution of linear and nonlinear fractional partial differential equations where the fractional derivative is defied as a Riemann-Liouville derivative. In the first part we modify the L1 scheme, developed initially by Oldham & Spanier (1974), to develop the three schemes which will be defined as the C1, C2 and C3 schemes. The accuracy of each method is considered. Then the memory effect of the fractional derivative due to nonlocal property is discussed. Methods of reduction of the computation L1 scheme are proposed using regression approximations. In the second part of this study, we consider numerical solution schemes for linear fractional partial differential equations. Here the numerical approximation schemes are developed using an approximation of the fractional derivative and a spatial discretization scheme. In this thesis the L1, C1, C2, C3 fractional derivative approximation schemes, developed in the first part of the thesis, are used in conjunction with either the Centred-finite difference scheme, the Dufort-Frankel scheme or the Keller Box scheme. The stability of these numerical schemes are investigated via the technique of the Fourier analysis (Von Neumann stability analysis). The convergence of each the numerical schemes is also discussed. Numerical tests were used to conform the accuracy and stability of each proposed method. In the last part of the thesis numerical schemes are developed to handle nonlinear partial differential equations and systems of nonlinear fractional partial differential equations. We considered two models of a reversible reaction in the presence of anomalous subdiffusion. The Centred-finite difference scheme and the Keller Box methods are used to spatially discretise the spatial domain in these schemes. Here the L1 scheme and a modification of the L1 scheme are used to approximate the fractional derivative. The accuracy of the methods are discussed and the convergence of the scheme are demonstrated by numerical experiments. We also give numerical examples to illustrate the e�ciency of the proposed scheme

    Efficient numerical methods to solve some reaction-diffusion problems arising in biology

    Get PDF
    Philosophiae Doctor - PhDIn this thesis, we solve some time-dependent partial differential equations, and systems of such equations, that governs reaction-diffusion models in biology. we design and implement some novel exponential time differencing schemes to integrate stiff systems of ordinary differential equations which arise from semi-discretization of the associated partial differential equations. We split the semi-linear PDE(s) into a linear, which contains the highly stiff part of the problem, and a nonlinear part, that is expected to vary more slowly than the linear part. Then we introduce higher-order finite difference approximations for the spatial discretization. Resulting systems of stiff ODEs are then solved by using exponential time differencing methods. We present stability properties of these methods along with extensive numerical simulations for a number of different reaction-diffusion models, including single and multi-species models. When the diffusivity is small many of the models considered in this work are found to exhibit a form of localized spatiotemporal patterns. Such patterns are correctly captured by our proposed numerical schemes. Hence, the schemes that we have designed in this thesis are dynamically consistent. Finally, in many cases, we have compared our results with those obtained by other researchers

    Estimates of solutions for parabolic differential and difference functional equations and applications

    Get PDF
    The theorems on the estimates of solutions for nonlinear second-order partial differential functional equations of parabolic type with Dirichlet's condition and for suitable implicit finite difference functional schemes are proved. The proofs are based on the comparison technique. The convergent and stable difference method is considered without the assumption of the global generalized Perron condition posed on the functional variable but with the local one only. It is a consequence of our estimates theorems. In particular, these results cover quasi-linear equations. However, such equations are also treated separately. The functional dependence is of the Volterra type

    Stability Analysis of Numerical Boundary Conditions and Implicit Difference Approximations for Hyperbolic Equations

    Get PDF
    Implicit noniterative finite-difference schemes have recently been developed by several authors for multidimensional systems of nonlinear hyperbolic partial differential equations. When applied to linear model equations with periodic boundary conditions those schemes are unconditionally stable (A-stable). As applied in practice the algorithms often face a severe time-step restriction. A major source of the difficulty is the treatment of the numerical boundary conditions. One conjecture has been that unconditional stability requires implicit numerical boundary conditions. An apparent counterexample was the space-time extrapolation considered by Gustafsson, Kreiss, and Sundstrom. In this paper we examine space (implicit) and space-time (explicit) extrapolation using normal mode analysis for a finite and infinite number of spatial mesh intervals. The results indicate that for unconditional stability with a finite number of spatial mesh intervals the numerical boundary conditions must be implicit
    corecore