4,849 research outputs found

    Power quality issues of 3MW direct-driven PMSG wind turbine

    Get PDF
    This paper presents power quality issues of a grid connected wind generation system with a MW-class direct-driven permanent magnet synchronous generator (PMSG). A variable speed wind turbine model was simulated and developed with the simulation tool of PSCAD/EMTDC. The model includes a wind turbine with one mass-model drive train model, a PMSG model and a full-scale voltage source back to back PWM converter. The converter controller model is employed in the dq-synchronous rotating reference frame and applied to both generator and grid sides. To achieve maximum power point tracking, a tip speed ratio method is applied in machine side, whereas DC voltage control is applied in grid side to achieve constant DC voltage. Due to wind fluctuation and power oscillation as a result of wind shear and tower shadow effects (3p), there will be a fluctuation in the output power and voltage. The concerned power quality issues in this work are Harmonics, power fluctuation and flicker emission. The measurements will be carried out under different wind speed and circumstances

    Modal Analysis of Grid Connected Doubly-Fed Induction Generators

    Get PDF
    This paper presents the modal analysis of a gridconnected doubly fed induction generator (DFIG). The change in modal properties for different system parameters, operating points, and grid strengths are computed and observed. The results offer a better understanding of theDFIG intrinsic dynamics,which can also be useful for control design and model justification. Index Terms—Doubly fed induction generator, eigenvalue analysis, nonlinear dynamic model, small-signal stability.Published versio

    Energy Shaping Control for Stabilization of Interconnected Voltage Source Converters in Weakly-Connected AC Microgrid Systems

    Get PDF
    With the ubiquitous installations of renewable energy resources such as solar and wind, for decentralized power applications across the United States, microgrids are being viewed as an avenue for achieving this goal. Various independent system operators and regional transmission operators such as Southwest Power Pool (SPP), Midcontinent System Operator (MISO), PJM Interconnection and Electric Reliability Council of Texas (ERCOT) manage the transmission and generation systems that host the distributed energy resources (DERs). Voltage source converters typically interconnect the DERs to the utility system and used in High voltage dc (HVDC) systems for transmitting power throughout the United States. A microgrid configuration is built at the 13.8kV 4.75MVA National Center for Reliable Energy Transmission (NCREPT) testing facility for performing grid-connected and islanded operation of interconnected voltage source converters. The interconnected voltage source converters consist of a variable voltage variable frequency (VVVF) drive, which powers a regenerative (REGEN) load bench acting as a distributed energy resource emulator. Due to the weak-grid interface in islanded mode testing, a voltage instability occurs on the VVVF dc link voltage causing the system to collapse. This dissertation presents a new stability theorem for stabilizing interconnected voltage source converters in microgrid systems with weak-grid interfaces. The new stability theorem is derived using the concepts of Dirac composition in Port-Hamiltonian systems, passivity in physical systems, eigenvalue analysis and robust analysis based on the edge theorem for parametric uncertainty. The novel stability theorem aims to prove that all members of the classes of voltage source converter-based microgrid systems can be stabilized using an energy-shaping control methodology. The proposed theorems and stability analysis justifies the development of the Modified Interconnection and Damping Assignment Passivity-Based Control (Modified IDA-PBC) method to be utilized in stabilizing the microgrid configuration at NCREPT for mitigating system instabilities. The system is simulated in MATLAB/SimulinkTM using the Simpower toolbox to observe the system’s performance of the designed controller in comparison to the decoupled proportional intergral controller. The simulation results verify that the Modified-IDA-PBC is a viable option for dc bus voltage control of interconnected voltage source converters in microgrid systems

    High-performance condenser microphone with fully integrated CMOS amplifier and DC-DC voltage converter

    Get PDF
    The development of a capacitive microphone with an integrated detection circuit is described. The condenser microphone is made by micromachining of polyimide on silicon. Therefore, the structure can be realized by postprocessing on substrates containing integrated circuits (IC's), independently of the IC process, integrated microphones with excellent performances have been realized on a CMOS substrate containing dc-dc voltage converters and preamplifiers. The measured sensitivity of the integrated condenser microphone was 10 mV/Pa, and the equivalent noise level (ENL) was 27 dB(A) re. 20 ÂżPa for a power supply voltage of 1.9 V, which was measured with no bias voltage applied to the microphone. Furthermore, a back chamber of infinite volume was used in all reported measurements and simulation

    DFIG Based Wind Turbine System For Clemson Micro-grid

    Get PDF
    As an important part of the smart grid, the micro-grid interfaces with distributed energy sources, loads and control devices. A doubly fed induction generator (DFIG) based wind turbine (WT) is the main power source of the presented project. The DFIG system is connected to the three phase AC grid via back-to-back power converter and an LCL filter. Decoupled q-d control strategies are investigated for the DFIG system. Matlab/Simulink results will show the performance of the proposed system. Hardware validation results are also presented and discussed. As a rapidly increasing research interest area the dc micro-grid has been extensively investigated. A topology is proposed to connect the DFIG based WT system to a dc link using a diode bridge and a three phase power converter. The rotor side of the DFIG is connected to the dc link through a converter while the stator is connecting to a three phase diode bridge with the dc side connected to a dc link. The control method is developed to regulate the stator frequency and the d-q axis voltage of the diode bridge to operate the DFIG at a desired stator frequency and generate the required power. Undesired harmonics in the three phase system will lead to excessive THD, a decrease the power quality and an increase the power loss of the system. An novel methods to compensate the current harmonics by controlling the power converter of the DFIG system is also proposed. With the DFIG connected to the three phase AC gird, the focus has been put into a scenario: a nonlinear load connected to the same node of the DFIG point of common coupling (PCC) to the gird, to draw the harmonics to the system. In the proposed dc link system, the diode bridge will introduce harmonics to the stator current of the DFIG. In both cases, the selected low-order harmonics are detected and calculated by a multiple reference frame estimator. The control methods of how to regulate the harmonics are developed for both the grid-side converter and the rotor-side converter based on multiple reference frame theory. A hybrid state observer for speed-sensorless motor drives of induction machines is also proposed. The hybrid observer comprises of a Luenberger observer and a sliding mode observer. For a conventional induction motor with shorted rotor, the stator currents and rotor flux linkages are estimating following a Luenberger observer. While, for a DFIG the similar approach will apply to the stator currents and rotor currents. The rotor speed is estimated using a sliding mode observer. The combination of two observers takes advantage of both approaches. The Luenberger observer is easy to realize and the computational burden is small. The sliding mode observer is known for its robustness with respect to model parameter errors and it will also provide a fast convergence rate. The chattering of the sliding mode observer is addressed by applying a boundary layer

    High-performance control of a three-phase voltage-source converter including feedforward compensation of the estimated load current

    Get PDF
    In this paper a new control strategy for voltage-source converters (VSC) is introduced. The proposed strategy consists of a nonlinear feedback controller based on feedback linearization plus a feedforward compensation of the estimated load current. In our proposal an energy function and the direct-axis current are considered as outputs, in order to avoid the internal dynamics. In this way, a full linearization is obtained via nonlinear transformation and feedback. An estimate of the load current is feedforwarded to improve the performance of the whole system and to diminish the capacitor size. This estimation allows to obtain a more rugged and cheaper implementation. The estimate is calculated by using a nonlinear reduced-order observer. The proposal is validated through different tests. These tests include performance in presence of switching frequency, measurement filters delays, parameters uncertainties and disturbances in the input voltage.Fil: Leon, Enrique Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Solsona, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Busada, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Chiacchiarini, Hector Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Valla, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentin

    Full- & Reduced-Order State-Space Modeling of Wind Turbine Systems with Permanent-Magnet Synchronous Generator

    Get PDF
    Wind energy is an integral part of nowadays energy supply and one of the fastest growing sources of electricity in the world today. Accurate models for wind energy conversion systems (WECSs) are of key interest for the analysis and control design of present and future energy systems. Existing control-oriented WECSs models are subject to unstructured simplifications, which have not been discussed in literature so far. Thus, this technical note presents are thorough derivation of a physical state-space model for permanent magnet synchronous generator WECSs. The physical model considers all dynamic effects that significantly influence the system's power output, including the switching of the power electronics. Alternatively, the model is formulated in the (a,b,c)(a,b,c)- and (d,q)(d,q)-reference frame. Secondly, a complete control and operation management system for the wind regimes II and III and the transition between the regimes is presented. The control takes practical effects such as input saturation and integral windup into account. Thirdly, by a structured model reduction procedure, two state-space models of WECS with reduced complexity are derived: a non-switching model and a non-switching reduced-order model. The validity of the models is illustrated and compared through a numerical simulation study.Comment: 23 pages, 11 figure
    • 

    corecore