2,338 research outputs found

    Stabilization of Compressor Surge Using Gain-Scheduled Controller

    Get PDF
    Gain scheduling is a control method that is used in nonlinear systems to optimize their controlled performance and robustness over a wide range of operating conditions. It is one of the most commonly used controller design approaches for nonlinear systems. In this control technique, the controller consists of a collection of linear controllers, each of which provides satisfactory closed-loop stability and performance for a small operating region, and combined they guarantee the stability of the system along the entire operating range. The operating region of the system is determined by a scheduling signal, also known as the scheduling variable, which may be either exogenous or endogenous with respect to the plan. A good design of the gain-scheduled controller requires a suitable selection of the scheduling variables to properly reflect the dynamics of the system. In this thesis, we apply the gain scheduling control method to the control of compression systems with active magnetic bearings (AMBs). First, a gain-scheduled controller is designed and tested for the rotor levitation control of the AMB system. The levitation controller is designed to guarantee robust rotor levitation over a wide range of rotating speeds. We show through numerical simulation that the rotor vibration is contained in the presence of uncertainties introduced by speed dependent gyroscopic forces. Next, we implement the gain scheduling control method to the active stabilization of compressor surge in a compression system using the AMBs as actuators. Recently, Yoon et al. [1] showed that AMBs can be used to stabilize the surge instability in a compression system. In this thesis, we demonstrate that gain scheduling control can effectively extend the stable operating region of the compression system beyond the limits presented in [1]. For the stabilization of surge, a gain-scheduled controller was obtained by combining six linear controllers that together they cover the full operating range of the compression system. We were able to demonstrate through numerical simulation that the designed surge controller is effective in suppressing the instability down to a throttle valve opening of 12%, and in the presence of random flow disturbance and actuator saturation. An observer-based technique was implemented to achieve a bumpless and smooth transfer when switching between the linear controllers

    Distributed Control Systems for a Wastewater Treatment Plant: Architectures and Advanced Control Solutions

    Get PDF
    This chapter is focused on the development and implementation of a distributed and hierarchized control system for the wastewater treatment plant (WTP) Calafat, Romania. The primary control loops for both treatment lines (water and activated sludge) are developed and analyzed. Also, the distributed control system (DCS) architecture of the wastewater treatment plant is presented, and the advantages of the proposed control structure are highlighted. In order to increase the performance of the overall control system, some advanced control solutions are investigated. More precisely, multivariable adaptive and robust control algorithms are proposed for the activated sludge bioprocess. Several realistic simulation experiments are performed, and the obtained results are analyzed

    Control and operation of a spinning disc reactor

    Get PDF
    PhD ThesisThe aim of the present research is to assess the control and operation of a Spinning Disc Reactor (SDR), carried out via four separate investigations. Firstly, the effect of equipment size reduction on control is studied by comparing the performance of a PID controller applied to simulated intensified and conventional processes. It was found that superior control performance in terms of Integral of Absolute Error (IAE) is achieved for the simulated intensified system. However, the results showed that intensified systems are more susceptible to disturbances and the controlled variable exhibits larger overshoots. Furthermore, the frequency response analysis of the two systems showed that the simulated intensified system has reduced stability margins. The second part of the research investigates the task of pH control in a SDR using a PID controller by means of simulation and experimental studies. The effectiveness of a disturbance observer (DO) and a pH characteriser to compensate for the severe pH system nonlinearity is also explored in detail. The experimental studies showed that a PID controller provides adequate setpoint tracking and disturbance rejection performances. However, sluggish transient responses prevailed and the effluent pH limit cycled around the setpoint. There were indications of unstable behaviour at lower flowrates, which implied more advanced control schemas may be required to adapt to various operating regions dictated by the complex thin film hydrodynamics. The addition of the DO scheme improved the control performance by reducing the limit cycles. In the third segment of the investigations, the potential of exploiting the disc rotational speed as a manipulated variable is assessed for the process of barium sulphate precipitation. A PI controller is successfully used to regulate the conductivity of the effluent stream by adjusting the disc rotational speed. The results are immensely encouraging and show that the disc speed may be used as an extra degree of freedom in control system design. Finally, the flow regimes and wave characteristics of thin liquid films produced in a SDR are investigated by means of a thermal imaging camera. The film hydrodynamics strongly affect the heat and mass transfer processes within the processing films, and thus the intensification aspects of SDRs. Therefore, effective control and operation of such units is significantly dependent on the knowledge of film hydrodynamics and the underlying impact of the operating parameters and the manipulated variables on a given process. The results provided an interesting insight and unveiled promising potentials for characterisation of thin liquid film flow and temperature profiles across the disc by means of thermographic techniques. The present study reveals both challenges and opportunities regarding the control aspects of SDRs. It is recommended that equipment design and process control need to be considered simultaneously during the early stages of the future developments. Furthermore, intensified sensors and advanced controllers may be required to achieve an optimum control capability. Currently, the control performance is inhibited by the lack of sufficient considerations during the SDR design and manufacturing stages, and also by the characteristics of the commercially available instrumentation.EPSRC Doctoral Training Awar

    Rotorcraft flight-propulsion control integration: An eclectic design concept

    Get PDF
    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented

    Artificial neural network predication and validation of optimum suspension parameters of a passive suspension system

    Get PDF
    This paper presents the modeling and optimization of quarter car suspension system using Macpherson strut. A mathematical model of quarter car is developed, simulated and optimized in Matlab/Simulink® environment. The results are validated using test rig. The suspension system parameters are optimized using a genetic algorithm for objective functions viz. vibration dose value (VDV), frequency weighted root mean square acceleration (hereafter called as RMS acceleration), maximum transient vibration value, root mean square suspension space and root mean square tyre deflection. ISO 2631-1 standard is adopted to assess ride and health criterion. Results shows that optimum parameters provide ride comfort and health criterions over classical design. The optimization results are experimentally validated using quarter car test setup. The genetic algorithm optimization results are further extended to the artificial neural network simulation and prediction model. Artificial neural network model is carried out in Matlab/Simulink® environment and Neuro Dimensions. Simulation, experimental and predicted results are in close correlation. The optimized system reduces the values of VDV by 45%. Also, RMS acceleration is reduced by 47%. Thus, the optimized system improved ride comfort by reducing RMS acceleration and improved health criterion by reducing the VDV. Finally ANN can be used for predicting the optimum suspension parameters values with good agreement

    A Comparative Study on Fault Detection and Self-Reconfiguration

    Get PDF
    Extended State Observer (ESO) and the Alpha-Beta-Gamma Tracker are introduced and compared. In comparison, the ESO is found to be more noise resistant. The extended state used for the estimation of the general system dynamics in real time makes it suitable for fault detection. Four control schemes are proposed for self-reconfiguration upon fault detection. These schemes are Active Disturbance Rejection Control, Tracker-based Feedback Control, Fuzzy Logic Control and Tracker-based PID Control. To compare their control performance, these schemes are applied to three different applications namely Active Engine Vibration Isolation System, Three-Tank Dynamic System and MEMS Gyroscope System. The advantages and disadvantages of using the control schemes for each application are presente
    corecore