203 research outputs found

    On the Equalization of an OFDM-Based Radio-over-Fiber System Using Neural Networks

    Get PDF
    In this study the impact of a Radio-over-Fiber (RoF) subsystem on the performance of Orthogonal Frequency Division Multiplexing (OFDM) system is evaluated. The study investigates the use of Multi-Layered Perceptron (MLP) and Radial Basis Function (RBF) neural networks to compensate for the optical subsystem nonlinearities in terms of bit error rate, error vector magnitude, and computational complexity. The Bit Error Rate (BER) and Error Vector Magnitude (EVM) results show that the performance of MLP neural network is superior to that of RBF neural network and time-multiplexed pilot-based equalizer especially in the case of highly nonlinear behavior of the RoF subsystem

    All-optical Reservoir Computing

    Full text link
    Reservoir Computing is a novel computing paradigm which uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible

    Application of Functional Link Artificial Neural Network for Prediction of Machinery Noise in Opencast Mines

    Get PDF
    Functional link-based neural network models were applied to predict opencast mining machineries noise. The paper analyzes the prediction capabilities of functional link neural network based noise prediction models vis-à-vis existing statistical models. In order to find the actual noise status in opencast mines, some of the popular noise prediction models, for example, ISO-9613-2, CONCAWE, VDI, and ENM, have been applied in mining and allied industries to predict the machineries noise by considering various attenuation factors. Functional link artificial neural network (FLANN), polynomial perceptron network (PPN), and Legendre neural network (LeNN) were used to predict the machinery noise in opencast mines. The case study is based on data collected from an opencast coal mine of Orissa, India. From the present investigations, it could be concluded that the FLANN model give better noise prediction than the PPN and LeNN model

    Deep photonic reservoir computing recurrent network

    Full text link
    Deep neural networks usually process information through multiple hidden layers. However, most hardware reservoir computing recurrent networks only have one hidden reservoir layer, which significantly limits the capability of solving real-world complex tasks. Here we show a deep photonic reservoir computing (PRC) architecture, which is constructed by cascading injection-locked semiconductor lasers. In particular, the connection between successive hidden layers is all optical, without any optical-electrical conversion or analog-digital conversion. The proof of concept is demonstrated on a PRC consisting of 4 hidden layers and 320 interconnected neurons. In addition, we apply the deep PRC in the real-world signal equalization of an optical fiber communication system. It is found that the deep PRC owns strong ability to compensate the nonlinearity of fibers

    Review of active noise control techniques with emphasis on sound quality enhancement

    Get PDF
    The traditional active noise control design aims to attenuate the energy of residual noise, which is indiscriminative in the frequency domain. However, it is necessary to retain residual noise with a specified spectrum to satisfy the requirements of human perception in some applications. In this paper, the evolution of active noise control and sound quality are briefly discussed. This paper emphasizes on the advancement of active noise control method in the past decades in terms of enhancing the sound quality

    Dinamički odziv nove adaptivne modificirane povratne Legendrove neuronske mreže upravljanja sinkronim motorom s permanentnim magnetima za električni skuter

    Get PDF
    Because an electric scooter driven by permanent magnet synchronous motor (PMSM) servo-driven system has the unknown nonlinearity and the time-varying characteristics, its accurate dynamic model is difficult to establish for the design of the linear controller in whole system. In order to conquer this difficulty and raise robustness, a novel adaptive modified recurrent Legendre neural network (NN) control system, which has fast convergence and provide high accuracy, is proposed to control for PMSM servo-driven electric scooter under the external disturbances and parameter variations in this study. The novel adaptive modified recurrent Legendre NN control system consists of a modified recurrent Legendre NN control with adaptation law and a remunerated control with estimation law. In addition, the online parameter tuning methodology of the modified recurrent Legendre NN control and the estimation law of the remunerated control can be derived by using the Lyapunov stability theorem and the gradient descent method. Furthermore, the modified recurrent Legendre NN with variable learning rate is proposed to raise convergence speed. Finally, comparative studies are demonstrated by experimental results in order to show the effectiveness of the proposed control scheme.S obzirom da električni skuter pogonjen servo sustavom sa sinkroni motor s permanentnim magnetima ima nelinearnu dinamiku i vremenski promjenjive parametre, njegov dinamički model nije jednostavno odrediti u svrhu dizajniranja linearnog regulatora. Kako bi se riješio taj problem te povećala robusnost predložen je sustav upravljanja korištenjem adaptivne modificirane povratne Legendrove neuronske mreže za upravljanje skuterom pogonjenim servo sustavom sa sinkronim motorom uz prisustvo vanjskog poremećaja i promjenjivih parametara. Predloženo upravljanje ima brzu konvergenciju i visoku preciznost. Sustav upravljanja sastoji se od modificirane povratne Legendrove neuronske moreže s adaptivnim zakonom upravljanja i estimacijom. Dodatno, \u27on-line\u27 podešavanje parametara takvog sustava može se dobiti korištenjem Ljapunovljevog teorema o stabilnosti sustava i gradijente metode. Modificirana povratne Legendrove neuronska mreža s promjenjivim vremenom učenja predložena je za povećanje brzine konvergencije. Ispravnost predložene sheme upravljanja provjerena je eksperimentalno

    Adaptive non linear system identification and channel equalization usinf functional link artificial neural network

    Get PDF
    In system theory, characterization and identification are fundamental problems. When the plant behavior is completely unknown, it may be characterized using certain model and then, its identification may be carried out with some artificial neural networks(ANN) like multilayer perceptron(MLP) or functional link artificial neural network(FLANN) using some learning rules such as back propagation (BP) algorithm. They offer flexibility, adaptability and versatility, so that a variety of approaches may be used to meet a specific goal, depending upon the circumstances and the requirements of the design specifications. The primary aim of the present thesis is to provide a framework for the systematic design of adaptation laws for nonlinear system identification and channel equalization. While constructing an artificial neural network the designer is often faced with the problem of choosing a network of the right size for the task. The advantages of using a smaller neural network are cheaper cost of computation and better generalization ability. However, a network which is too small may never solve the problem, while a larger network may even have the advantage of a faster learning rate. Thus it makes sense to start with a large network and then reduce its size. For this reason a Genetic Algorithm (GA) based pruning strategy is reported. GA is based upon the process of natural selection and does not require error gradient statistics. As a consequence, a GA is able to find a global error minimum. Transmission bandwidth is one of the most precious resources in digital communication systems. Communication channels are usually modeled as band-limited linear finite impulse response (FIR) filters with low pass frequency response. When the amplitude and the envelope delay response are not constant within the bandwidth of the filter, the channel distorts the transmitted signal causing intersymbol interference (ISI). The addition of noise during propagation also degrades the quality of the received signal. All the signal processing methods used at the receiver's end to compensate the introduced channel distortion and recover the transmitted symbols are referred as channel equalization techniques.When the nonlinearity associated with the system or the channel is more the number of branches in FLANN increases even some cases give poor performance. To decrease the number of branches and increase the performance a two stage FLANN called cascaded FLANN (CFLANN) is proposed.This thesis presents a comprehensive study covering artificial neural network (ANN) implementation for nonlinear system identification and channel equalization. Three ANN structures, MLP, FLANN, CFLANN and their conventional gradient-descent training methods are extensively studied. Simulation results demonstrate that FLANN and CFLANN methods are directly applicable for a large class of nonlinear control systems and communication problems
    corecore