908 research outputs found

    Supervisory observer for parameter and state estimation of nonlinear systems using the DIRECT algorithm

    Full text link
    A supervisory observer is a multiple-model architecture, which estimates the parameters and the states of nonlinear systems. It consists of a bank of state observers, where each observer is designed for some nominal parameter values sampled in a known parameter set. A selection criterion is used to select a single observer at each time instant, which provides its state estimate and parameter value. The sampling of the parameter set plays a crucial role in this approach. Existing works require a sufficiently large number of parameter samples, but no explicit lower bound on this number is provided. The aim of this work is to overcome this limitation by sampling the parameter set automatically using an iterative global optimisation method, called DIviding RECTangles (DIRECT). Using this sampling policy, we start with 1 + 2np parameter samples where np is the dimension of the parameter set. Then, the algorithm iteratively adds samples to improve its estimation accuracy. Convergence guarantees are provided under the same assumptions as in previous works, which include a persistency of excitation condition. The efficacy of the supervisory observer with the DIRECT sampling policy is illustrated on a model of neural populations

    LMI-Based Reset Unknown Input Observer for State Estimation of Linear Uncertain Systems

    Full text link
    This paper proposes a novel kind of Unknown Input Observer (UIO) called Reset Unknown Input Observer (R-UIO) for state estimation of linear systems in the presence of disturbance using Linear Matrix Inequality (LMI) techniques. In R-UIO, the states of the observer are reset to the after-reset value based on an appropriate reset law in order to decrease the L2L_2 norm and settling time of estimation error. It is shown that the application of the reset theory to the UIOs in the LTI framework can significantly improve the transient response of the observer. Moreover, the devised approach can be applied to both SISO and MIMO systems. Furthermore, the stability and convergence analysis of the devised R-UIO is addressed. Finally, the efficiency of the proposed method is demonstrated by simulation results

    An investigation of techniques for nonlinear state observation

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg, 2016An investigation and analysis of a collection of different techniques, for estimating the states of nonlinear systems, was undertaken. It was found that most of the existing literature on the topic could be organized into several groups of nonlinear observer design techniques, of which each group follows a specific concept and slight variations thereof. From out of this investigation it was discovered that a variation of the adaptive observer could be successfully applied to numerous nonlinear systems, given only limited output information. This particular technique formed the foundation on which a design procedure was developed in order to asymptotically estimate the states of nonlinear systems of a certain form, using only partial state information available. Lyapunov stability theory was used to prove the validity of this technique, given that certain conditions and assumptions are satisfied. A heuristic procedure was then developed to get a linearized model of the error transient behaviour that could form the upper bounds of the transient times of the observer. The technique above, characterized by a design algorithm, was then applied to three well-known nonlinear systems; namely the Lorenz attractor, the Rössler attractor, and the Van Der Pol oscillator. The results, illustrated through numerical simulation, clearly indicate that the technique developed is successful, provided all assumptions and conditions are satisfied.MT201

    Sliding mode adaptive state observation for time-delay uncertain nonlinear systems

    Get PDF
    In this paper a method to design robust adaptive sliding mode observers (ASMO) for a class of nonlinear time- delay systems with uncertainties, is proposed. The objective is to achieve insensitivity and robustness of the proposed sliding mode observer to matched disturbances. A novel systematic design method is synthesized to solve matching conditions and compute observer stabilizing gains. The Lyapunov-Krasovskii theorem is employed to prove the ultimate stability with arbitrary boundedness radius of the estimation error of the proposed filter. Finally, the ability of ASMO for fault reconstruction is studied

    A Multi-Observer Based Estimation Framework for Nonlinear Systems under Sensor Attacks

    Full text link
    We address the problem of state estimation and attack isolation for general discrete-time nonlinear systems when sensors are corrupted by (potentially unbounded) attack signals. For a large class of nonlinear plants and observers, we provide a general estimation scheme, built around the idea of sensor redundancy and multi-observer, capable of reconstructing the system state in spite of sensor attacks and noise. This scheme has been proposed by others for linear systems/observers and here we propose a unifying framework for a much larger class of nonlinear systems/observers. Using the proposed estimator, we provide an isolation algorithm to pinpoint attacks on sensors during sliding time windows. Simulation results are presented to illustrate the performance of our tools.Comment: arXiv admin note: text overlap with arXiv:1806.0648

    Introduction to State Estimation of High-Rate System Dynamics

    Get PDF
    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer’s convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model
    • …
    corecore