203 research outputs found

    Nonlinear unmixing of hyperspectral images: Models and algorithms

    Get PDF
    When considering the problem of unmixing hyperspectral images, most of the literature in the geoscience and image processing areas relies on the widely used linear mixing model (LMM). However, the LMM may be not valid, and other nonlinear models need to be considered, for instance, when there are multiscattering effects or intimate interactions. Consequently, over the last few years, several significant contributions have been proposed to overcome the limitations inherent in the LMM. In this article, we present an overview of recent advances in nonlinear unmixing modeling

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Nonlinear spectral unmixing of hyperspectral images using Gaussian processes

    Get PDF
    This paper presents an unsupervised algorithm for nonlinear unmixing of hyperspectral images. The proposed model assumes that the pixel reflectances result from a nonlinear function of the abundance vectors associated with the pure spectral components. We assume that the spectral signatures of the pure components and the nonlinear function are unknown. The first step of the proposed method consists of the Bayesian estimation of the abundance vectors for all the image pixels and the nonlinear function relating the abundance vectors to the observations. The endmembers are subsequently estimated using Gaussian process regression. The performance of the unmixing strategy is evaluated with simulations conducted on synthetic and real data

    Supervised Nonlinear Unmixing of Hyperspectral Images Using a Pre-image Methods

    Get PDF
    This book is a collection of 19 articles which reflect the courses given at the Collège de France/Summer school “Reconstruction d'images − Applications astrophysiques“ held in Nice and Fréjus, France, from June 18 to 22, 2012. The articles presented in this volume address emerging concepts and methods that are useful in the complex process of improving our knowledge of the celestial objects, including Earth

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Nonparametric Detection of Nonlinearly Mixed Pixels and Endmember Estimation in Hyperspectral Images

    Get PDF
    International audienceMixing phenomena in hyperspectral images depend on a variety of factors, such as the resolution of observation devices, the properties of materials, and how these materials interact with incident light in the scene. Different parametric and nonparametric models have been considered to address hyperspectral unmixing problems. The simplest one is the linear mixing model. Nevertheless, it has been recognized that the mixing phenomena can also be nonlinear. The corresponding nonlinear analysis techniques are necessarily more challenging and complex than those employed for linear unmixing. Within this context, it makes sense to detect the nonlinearly mixed pixels in an image prior to its analysis, and then employ the simplest possible unmixing technique to analyze each pixel. In this paper, we propose a technique for detecting nonlinearly mixed pixels. The detection approach is based on the comparison of the reconstruction errors using both a Gaussian process regression model and a linear regression model. The two errors are combined into a detection statistics for which a probability density function can be reasonably approximated. We also propose an iterative endmember extraction algorithm to be employed in combination with the detection algorithm. The proposed detect-then-unmix strategy, which consists of extracting endmembers, detecting nonlinearly mixed pixels and unmixing, is tested with synthetic and real images

    Hyper-Spectral Image Analysis with Partially-Latent Regression and Spatial Markov Dependencies

    Get PDF
    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.Comment: 12 pages, 4 figures, 3 table

    Nonlinear hyperspectral unmixing: strategies for nonlinear mixture detection, endmember estimation and band-selection

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2016.Abstract : Mixing phenomena in hyperspectral images depend on a variety of factors such as the resolution of observation devices, the properties of materials, and how these materials interact with incident light in the scene. Different parametric and nonparametric models have been considered to address hyperspectral unmixing problems. The simplest one is the linear mixing model. Nevertheless, it has been recognized that mixing phenomena can also be nonlinear. Kernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. However, the corresponding nonlinear analysis techniques are necessarily more challenging and complex than those employed for linear unmixing. Within this context, it makes sense to search for different strategies to produce simpler and/or more accurate results. In this thesis, we tackle three distinct parts of the complete spectral unmixing (SU) problem. First, we propose a technique for detecting nonlinearly mixed pixels. The detection approach is based on the comparison of the reconstruction errors using both a Gaussian process regression model and a linear regression model. The two errors are combined into a detection test statistics for which a probability density function can be reasonably approximated. Second, we propose an iterative endmember extraction algorithm to be employed in combination with the detection algorithm. The proposed detect-then-unmix strategy, which consists of extracting endmembers, detecting nonlinearly mixed pixels and unmixing, is tested with synthetic and real images. Finally, we propose two methods for band selection (BS) in the reproducing kernel Hilbert space (RKHS), which lead to a significant reduction of the processing time required by nonlinear unmixing techniques. The first method employs the kernel k-means (KKM) algorithm to find clusters in the RKHS. Each cluster centroid is then associated to the closest mapped spectral vector. The second method is centralized, and it is based upon the coherence criterion, which sets the largest value allowed for correlations between the basis kernel functions characterizing the unmixing model. We show that the proposed BS approach is equivalent to solving a maximum clique problem (MCP), that is, to searching for the largest complete subgraph in a graph. Furthermore, we devise a strategy for selecting the coherence threshold and the Gaussian kernel bandwidth using coherence bounds for linearly independent bases. Simulation results illustrate the efficiency of the proposed method.Imagem hiperespectral (HI) é uma imagem em que cada pixel contém centenas (ou até milhares) de bandas estreitas e contíguas amostradas num amplo domínio do espectro eletromagnético. Sensores hiperespectrais normalmente trocam resolução espacial por resolução espectral devido principalmente a fatores como a distância entre o instrumento e a cena alvo, e limitada capacidade de processamento, transmissão e armazenamento históricas, mas que se tornam cada vez menos problemáticas. Este tipo de imagem encontra ampla utilização em uma gama de aplicações em astronomia, agricultura, imagens biomédicas, geociências, física, vigilância e sensoriamento remoto. A usual baixa resolução espacial de sensores espectrais implica que o que se observa em cada pixel é normalmente uma mistura das assinaturas espectrais dos materiais presentes na cena correspondente (normalmente denominados de endmembers). Assim um pixel em uma imagem hiperespectral não pode mais ser determinado por um tom ou cor mas sim por uma assinatura espectral do material, ou materiais, que se encontram na região analisada. O modelo mais simples e amplamente utilizado em aplicações com imagens hiperespectrais é o modelo linear, no qual o pixel observado é modelado como uma combinação linear dos endmembers. No entanto, fortes evidências de múltiplas reflexões da radiação solar e/ou materiais intimamente misturados, i.e., misturados em nível microscópico, resultam em diversos modelos não-lineares dos quais destacam-se os modelos bilineares, modelos de pós não-linearidade, modelos de mistura íntima e modelos não-paramétricos. Define-se então o problema de desmistura espectral (ou em inglês spectral unmixing - SU), que consiste em determinar as assinaturas espectrais dos endmembers puros presentes em uma cena e suas proporções (denominadas de abundâncias) para cada pixel da imagem. SU é um problema inverso e por natureza cego uma vez que raramente estão disponíveis informações confiáveis sobre o número de endmembers, suas assinaturas espectrais e suas distribuições em uma dada cena. Este problema possui forte conexão com o problema de separação cega de fontes mas difere no fato de que no problema de SU a independência de fontes não pode ser considerada já que as abundâncias são de fato proporções e por isso dependentes (abundâncias são positivas e devem somar 1). A determinação dos endmembers é conhecida como extração de endmembers e a literatura apresenta uma gama de algoritmos com esse propósito. Esses algoritmos normalmente exploram a geometria convexa resultante do modelo linear e da restrições sobre as abundâncias. Quando os endmembers são considerados conhecidos, ou estimados em um passo anterior, o problema de SU torna-se um problema supervisionado, com pares de entrada (endmembers) e saída (pixels), reduzindo-se a uma etapa de inversão, ou regressão, para determinar as proporções dos endmembers em cada pixel. Quando modelos não-lineares são considerados, a literatura apresenta diversas técnicas que podem ser empregadas dependendo da disponibilidade de informações sobre os endmembers e sobre os modelos que regem a interação entre a luz e os materiais numa dada cena. No entanto, informações sobre o tipo de mistura presente em cenas reais são raramente disponíveis. Nesse contexto, métodos kernelizados, que assumem modelos não-paramétricos, têm sido especialmente bem sucedidos quando aplicados ao problema de SU. Dentre esses métodos destaca-se o SK-Hype, que emprega a teoria de mínimos quadrados-máquinas de vetores de suporte (LS-SVM), numa abordagem que considera um modelo linear com uma flutuação não-linear representada por uma função pertencente a um espaço de Hilbert de kernel reprodutivos (RKHS). Nesta tese de doutoramento diferentes problemas foram abordados dentro do processo de SU de imagens hiperespectrais não-lineares como um todo. Contribuições foram dadas para a detecção de misturas não-lineares, estimação de endmembers quando uma parte considerável da imagem possui misturas não-lineares, e seleção de bandas no espaço de Hilbert de kernels reprodutivos (RKHS). Todos os métodos foram testados através de simulações com dados sintéticos e reais, e considerando unmixing supervisionado e não-supervisionado. No Capítulo 4, um método semi-paramétrico de detecção de misturas não-lineares é apresentado para imagens hiperespectrais. Esse detector compara a performance de dois modelos: um linear paramétrico, usando mínimos-quadrados (LS), e um não-linear não-paramétrico usando processos Gaussianos. A idéia da utilização de modelos não-paramétricos se conecta com o fato de que na prática pouco se sabe sobre a real natureza da não-linearidade presente na cena. Os erros de ajuste desses modelos são então comparados em uma estatística de teste para a qual é possível aproximar a distribuição na hipótese de misturas lineares e, assim, estimar um limiar de detecção para uma dada probabilidade de falso-alarme. A performance do detector proposto foi estudada considerando problemas supervisionados e não-supervisionados, sendo mostrado que a melhoria obtida no desempenho SU utilizando o detector proposto é estatisticamente consistente. Além disso, um grau de não-linearidade baseado nas energias relativas das contribuições lineares e não-lineares do processo de mistura foi definido para quantificar a importância das parcelas linear e não-linear dos modelos. Tal definição é importante para uma correta avaliação dos desempenhos relativos de diferentes estratégias de detecção de misturas não-lineares. No Capítulo 5 um algoritmo iterativo foi proposto para a estimação de endmembers como uma etapa de pré-processamento para problemas SU não supervisionados. Esse algoritmo intercala etapas de detecção de misturas não-lineares e estimação de endmembers de forma iterativa, na qual uma etapa de estimação de endmembers é seguida por uma etapa de detecção, na qual uma parcela dos pixels mais não-lineares é descartada. Esse processo é repetido por um número máximo de execuções ou até um critério de parada ser atingido. Demonstra-se que o uso combinado do detector proposto com um algoritmo de estimação de endmembers leva a melhores resultados de SU quando comparado com soluções do estado da arte. Simulações utilizando diferentes cenários corroboram as conclusões. No Capítulo 6 dois métodos para SU não-linear de imagens hiperespectrais, que empregam seleção de bandas (BS) diretamente no espaço de Hilbert de kernels reprodutivos (RKHS), são apresentados. O primeiro método utiliza o algoritmo Kernel K-Means (KKM) para encontrar clusters diretamente no RKHS onde cada centroide é então associada ao vetor espectral mais próximo. O segundo método é centralizado e baseado no critério de coerência, que incorpora uma medida da qualidade do dicionário no RKHS para a SU não-linear. Essa abordagem centralizada é equivalente a resolver um problema de máximo clique (MCP). Contrariamente a outros métodos concorrentes que não incluem uma escolha eficiente dos parâmetros do modelo, o método proposto requer apenas uma estimativa inicial do número de bandas selecionadas. Os resultados das simulações empregando dados, tanto sintéticos como reais, ilustram a qualidade dos resultados de unmixing obtidos com os métodos de BS propostos. Ao utilizar o SK-Hype, para um número reduzido de bandas, são obtidas estimativas de abundância tão precisas quanto aquelas obtidas utilizando o método SK-Hype com todo o espectro disponível, mas com uma pequena fração do custo computacional
    corecore