10,856 research outputs found

    A robust extended H-infinity filtering approach to multi-robot cooperative localization in dynamic indoor environments

    Get PDF
    Multi-robot cooperative localization serves as an essential task for a team of mobile robots to work within an unknown environment. Based on the real-time laser scanning data interaction, a robust approach is proposed to obtain optimal multi-robot relative observations using the Metric-based Iterative Closest Point (MbICP) algorithm, which makes it possible to utilize the surrounding environment information directly instead of placing a localization-mark on the robots. To meet the demand of dealing with the inherent non-linearities existing in the multi-robot kinematic models and the relative observations, a robust extended H∞ filtering (REHF) approach is developed for the multi-robot cooperative localization system, which could handle non-Gaussian process and measurement noises with respect to robot navigation in unknown dynamic scenes. Compared with the conventional multi-robot localization system using extended Kalman filtering (EKF) approach, the proposed filtering algorithm is capable of providing superior performance in a dynamic indoor environment with outlier disturbances. Both numerical experiments and experiments conducted for the Pioneer3-DX robots show that the proposed localization scheme is effective in improving both the accuracy and reliability of the performance within a complex environment.This work was supported inpart by the National Natural Science Foundation of China under grants 61075094, 61035005 and 61134009

    Performance improvement in VSLAM using stabilized feature points

    Get PDF
    Simultaneous localization and mapping (SLAM) is the main prerequisite for the autonomy of a mobile robot. In this paper, we present a novel method that enhances the consistency of the map using stabilized corner features. The proposed method integrates template matching based video stabilization and Harris corner detector. Extracting Harris corner features from stabilized video consistently increases the accuracy of the localization. Data coming from a video camera and odometry are fused in an Extended Kalman Filter (EKF) to determine the pose of the robot and build the map of the environment. Simulation results validate the performance improvement obtained by the proposed technique
    corecore