18 research outputs found

    Phone-based speech synthesis using neural network with articulatory control.

    Get PDF
    by Lo Wai Kit.Thesis (M.Phil.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (leaves 151-160).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Applications of Speech Synthesis --- p.2Chapter 1.1.1 --- Human Machine Interface --- p.2Chapter 1.1.2 --- Speech Aids --- p.3Chapter 1.1.3 --- Text-To-Speech (TTS) system --- p.4Chapter 1.1.4 --- Speech Dialogue System --- p.4Chapter 1.2 --- Current Status in Speech Synthesis --- p.6Chapter 1.2.1 --- Concatenation Based --- p.6Chapter 1.2.2 --- Parametric Based --- p.7Chapter 1.2.3 --- Articulatory Based --- p.7Chapter 1.2.4 --- Application of Neural Network in Speech Synthesis --- p.8Chapter 1.3 --- The Proposed Neural Network Speech Synthesis --- p.9Chapter 1.3.1 --- Motivation --- p.9Chapter 1.3.2 --- Objectives --- p.9Chapter 1.4 --- Thesis outline --- p.11Chapter 2 --- Linguistic Basics for Speech Synthesis --- p.12Chapter 2.1 --- Relations between Linguistic and Speech Synthesis --- p.12Chapter 2.2 --- Basic Phonology and Phonetics --- p.14Chapter 2.2.1 --- Phonology --- p.14Chapter 2.2.2 --- Phonetics --- p.15Chapter 2.2.3 --- Prosody --- p.16Chapter 2.3 --- Transcription Systems --- p.17Chapter 2.3.1 --- The Employed Transcription System --- p.18Chapter 2.4 --- Cantonese Phonology --- p.20Chapter 2.4.1 --- Some Properties of Cantonese --- p.20Chapter 2.4.2 --- Initial --- p.21Chapter 2.4.3 --- Final --- p.23Chapter 2.4.4 --- Lexical Tone --- p.25Chapter 2.4.5 --- Variations --- p.26Chapter 2.5 --- The Vowel Quadrilaterals --- p.29Chapter 3 --- Speech Synthesis Technology --- p.32Chapter 3.1 --- The Human Speech Production --- p.32Chapter 3.2 --- Important Issues in Speech Synthesis System --- p.34Chapter 3.2.1 --- Controllability --- p.34Chapter 3.2.2 --- Naturalness --- p.34Chapter 3.2.3 --- Complexity --- p.35Chapter 3.2.4 --- Information Storage --- p.35Chapter 3.3 --- Units for Synthesis --- p.37Chapter 3.4 --- Type of Synthesizer --- p.40Chapter 3.4.1 --- Copy Concatenation --- p.40Chapter 3.4.2 --- Vocoder --- p.41Chapter 3.4.3 --- Articulatory Synthesis --- p.44Chapter 4 --- Neural Network Speech Synthesis with Articulatory Control --- p.47Chapter 4.1 --- Neural Network Approximation --- p.48Chapter 4.1.1 --- The Approximation Problem --- p.48Chapter 4.1.2 --- Network Approach for Approximation --- p.49Chapter 4.2 --- Artificial Neural Network for Phone-based Speech Synthesis --- p.53Chapter 4.2.1 --- Network Approximation for Speech Signal Synthesis --- p.53Chapter 4.2.2 --- Feed forward Backpropagation Neural Network --- p.56Chapter 4.2.3 --- Radial Basis Function Network --- p.58Chapter 4.2.4 --- Parallel Operating Synthesizer Networks --- p.59Chapter 4.3 --- Template Storage and Control for the Synthesizer Network --- p.61Chapter 4.3.1 --- Implicit Template Storage --- p.61Chapter 4.3.2 --- Articulatory Control Parameters --- p.61Chapter 4.4 --- Summary --- p.65Chapter 5 --- Prototype Implementation of the Synthesizer Network --- p.66Chapter 5.1 --- Implementation of the Synthesizer Network --- p.66Chapter 5.1.1 --- Network Architectures --- p.68Chapter 5.1.2 --- Spectral Templates for Training --- p.74Chapter 5.1.3 --- System requirement --- p.76Chapter 5.2 --- Subjective Listening Test --- p.79Chapter 5.2.1 --- Sample Selection --- p.79Chapter 5.2.2 --- Test Procedure --- p.81Chapter 5.2.3 --- Result --- p.83Chapter 5.2.4 --- Analysis --- p.86Chapter 5.3 --- Summary --- p.88Chapter 6 --- Simplified Articulatory Control for the Synthesizer Network --- p.89Chapter 6.1 --- Coarticulatory Effect in Speech Production --- p.90Chapter 6.1.1 --- Acoustic Effect --- p.90Chapter 6.1.2 --- Prosodic Effect --- p.91Chapter 6.2 --- Control in various Synthesis Techniques --- p.92Chapter 6.2.1 --- Copy Concatenation --- p.92Chapter 6.2.2 --- Formant Synthesis --- p.93Chapter 6.2.3 --- Articulatory synthesis --- p.93Chapter 6.3 --- Articulatory Control Model based on Vowel Quad --- p.94Chapter 6.3.1 --- Modeling of Variations with the Articulatory Control Model --- p.95Chapter 6.4 --- Voice Correspondence : --- p.97Chapter 6.4.1 --- For Nasal Sounds ´ؤ Inter-Network Correspondence --- p.98Chapter 6.4.2 --- In Flat-Tongue Space - Intra-Network Correspondence --- p.101Chapter 6.5 --- Summary --- p.108Chapter 7 --- Pause Duration Properties in Cantonese Phrases --- p.109Chapter 7.1 --- The Prosodic Feature - Inter-Syllable Pause --- p.110Chapter 7.2 --- Experiment for Measuring Inter-Syllable Pause of Cantonese Phrases --- p.111Chapter 7.2.1 --- Speech Material Selection --- p.111Chapter 7.2.2 --- Experimental Procedure --- p.112Chapter 7.2.3 --- Result --- p.114Chapter 7.3 --- Characteristics of Inter-Syllable Pause in Cantonese Phrases --- p.117Chapter 7.3.1 --- Pause Duration Characteristics for Initials after Pause --- p.117Chapter 7.3.2 --- Pause Duration Characteristic for Finals before Pause --- p.119Chapter 7.3.3 --- General Observations --- p.119Chapter 7.3.4 --- Other Observations --- p.121Chapter 7.4 --- Application of Pause-duration Statistics to the Synthesis System --- p.124Chapter 7.5 --- Summary --- p.126Chapter 8 --- Conclusion and Further Work --- p.127Chapter 8.1 --- Conclusion --- p.127Chapter 8.2 --- Further Extension Work --- p.130Chapter 8.2.1 --- Regularization Network Optimized on ISD --- p.130Chapter 8.2.2 --- Incorporation of Non-Articulatory Parameters to Control Space --- p.130Chapter 8.2.3 --- Experiment on Other Prosodic Features --- p.131Chapter 8.2.4 --- Application of Voice Correspondence to Cantonese Coda Discrim- ination --- p.131Chapter A --- Cantonese Initials and Finals --- p.132Chapter A.1 --- Tables of All Cantonese Initials and Finals --- p.132Chapter B --- Using Distortion Measure as Error Function in Neural Network --- p.135Chapter B.1 --- Formulation of Itakura-Saito Distortion Measure for Neural Network Error Function --- p.135Chapter B.2 --- Formulation of a Modified Itakura-Saito Distortion (MISD) Measure for Neural Network Error Function --- p.137Chapter C --- Orthogonal Least Square Algorithm for RBFNet Training --- p.138Chapter C.l --- Orthogonal Least Squares Learning Algorithm for Radial Basis Function Network Training --- p.138Chapter D --- Phrase Lists --- p.140Chapter D.1 --- Two-Syllable Phrase List for the Pause Duration Experiment --- p.140Chapter D.1.1 --- 兩字詞 --- p.140Chapter D.2 --- Three/Four-Syllable Phrase List for the Pause Duration Experiment --- p.144Chapter D.2.1 --- 片語 --- p.14

    Acoustic Approaches to Gender and Accent Identification

    Get PDF
    There has been considerable research on the problems of speaker and language recognition from samples of speech. A less researched problem is that of accent recognition. Although this is a similar problem to language identification, di�erent accents of a language exhibit more fine-grained di�erences between classes than languages. This presents a tougher problem for traditional classification techniques. In this thesis, we propose and evaluate a number of techniques for gender and accent classification. These techniques are novel modifications and extensions to state of the art algorithms, and they result in enhanced performance on gender and accent recognition. The first part of the thesis focuses on the problem of gender identification, and presents a technique that gives improved performance in situations where training and test conditions are mismatched. The bulk of this thesis is concerned with the application of the i-Vector technique to accent identification, which is the most successful approach to acoustic classification to have emerged in recent years. We show that it is possible to achieve high accuracy accent identification without reliance on transcriptions and without utilising phoneme recognition algorithms. The thesis describes various stages in the development of i-Vector based accent classification that improve the standard approaches usually applied for speaker or language identification, which are insu�cient. We demonstrate that very good accent identification performance is possible with acoustic methods by considering di�erent i-Vector projections, frontend parameters, i-Vector configuration parameters, and an optimised fusion of the resulting i-Vector classifiers we can obtain from the same data. We claim to have achieved the best accent identification performance on the test corpus for acoustic methods, with up to 90% identification rate. This performance is even better than previously reported acoustic-phonotactic based systems on the same corpus, and is very close to performance obtained via transcription based accent identification. Finally, we demonstrate that the utilization of our techniques for speech recognition purposes leads to considerably lower word error rates. Keywords: Accent Identification, Gender Identification, Speaker Identification, Gaussian Mixture Model, Support Vector Machine, i-Vector, Factor Analysis, Feature Extraction, British English, Prosody, Speech Recognition

    Estimation de cartes d'énergie du bruit apériodique de la marche humaine avec une caméra de profondeur pour la détection de pathologies et modèles légers de détection d'objets saillants basés sur l'opposition de couleurs

    Full text link
    Cette thèse a pour objectif l’étude de trois problèmes : l’estimation de cartes de saillance de l’énergie du bruit apériodique de la marche humaine par la perception de profondeur pour la détection de pathologies, les modèles de détection d’objets saillants en général et les modèles légers en particulier par l’opposition de couleurs. Comme première contribution, nous proposons un système basé sur une caméra de profondeur et un tapis roulant, qui analyse les parties du corps du patient ayant un mouvement irrégulier, en termes de périodicité, pendant la marche. Nous supposons que la marche d'un sujet sain présente n'importe où dans son corps, pendant les cycles de marche, un signal de profondeur avec un motif périodique sans bruit. La présence de bruit et son importance peuvent être utilisées pour signaler la présence et l'étendue de pathologies chez le sujet. Notre système estime, à partir de chaque séquence vidéo, une carte couleur de saillance montrant les zones de fortes irrégularités de marche, en termes de périodicité, appelées énergie de bruit apériodique, de chaque sujet. Notre système permet aussi de détecter automatiquement les cartes des individus sains et ceux malades. Nous présentons ensuite deux approches pour la détection d’objets saillants. Bien qu’ayant fait l’objet de plusieurs travaux de recherche, la détection d'objets saillants reste un défi. La plupart des modèles traitent la couleur et la texture séparément et les considèrent donc implicitement comme des caractéristiques indépendantes, à tort. Comme deuxième contribution, nous proposons une nouvelle stratégie, à travers un modèle simple, presque sans paramètres internes, générant une carte de saillance robuste pour une image naturelle. Cette stratégie consiste à intégrer la couleur dans les motifs de texture pour caractériser une micro-texture colorée, ceci grâce au motif ternaire local (LTP) (descripteur de texture simple mais puissant) appliqué aux paires de couleurs. La dissemblance entre chaque paire de micro-textures colorées est calculée en tenant compte de la non-linéarité des micro-textures colorées et en préservant leurs distances, donnant une carte de saillance intermédiaire pour chaque espace de couleur. La carte de saillance finale est leur combinaison pour avoir des cartes robustes. Le développement des réseaux de neurones profonds a récemment permis des performances élevées. Cependant, il reste un défi de développer des modèles de même performance pour des appareils avec des ressources limitées. Comme troisième contribution, nous proposons une nouvelle approche pour un modèle léger de réseau neuronal profond de détection d'objets saillants, inspiré par les processus de double opposition du cortex visuel primaire, qui lient inextricablement la couleur et la forme dans la perception humaine des couleurs. Notre modèle proposé, CoSOV1net, est entraîné à partir de zéro, sans utiliser de ``backbones'' de classification d'images ou d'autres tâches. Les expériences sur les ensembles de données les plus utilisés et les plus complexes pour la détection d'objets saillants montrent que CoSOV1Net atteint des performances compétitives avec des modèles de l’état-de-l’art, tout en étant un modèle léger de détection d'objets saillants et pouvant être adapté aux environnements mobiles et aux appareils à ressources limitées.The purpose of this thesis is to study three problems: the estimation of saliency maps of the aperiodic noise energy of human gait using depth perception for pathology detection, and to study models for salient objects detection in general and lightweight models in particular by color opposition. As our first contribution, we propose a system based on a depth camera and a treadmill, which analyzes the parts of the patient's body with irregular movement, in terms of periodicity, during walking. We assume that a healthy subject gait presents anywhere in his (her) body, during gait cycles, a depth signal with a periodic pattern without noise. The presence of noise and its importance can be used to point out presence and extent of the subject’s pathologies. Our system estimates, from each video sequence, a saliency map showing the areas of strong gait irregularities, in terms of periodicity, called aperiodic noise energy, of each subject. Our system also makes it possible to automatically detect the saliency map of healthy and sick subjects. We then present two approaches for salient objects detection. Although having been the subject of many research works, salient objects detection remains a challenge. Most models treat color and texture separately and therefore implicitly consider them as independent feature, erroneously. As a second contribution, we propose a new strategy through a simple model, almost without internal parameters, generating a robust saliency map for a natural image. This strategy consists in integrating color in texture patterns to characterize a colored micro-texture thanks to the local ternary pattern (LTP) (simple but powerful texture descriptor) applied to the color pairs. The dissimilarity between each colored micro-textures pair is computed considering non-linearity from colored micro-textures and preserving their distances. This gives an intermediate saliency map for each color space. The final saliency map is their combination to have robust saliency map. The development of deep neural networks has recently enabled high performance. However, it remains a challenge to develop models of the same performance for devices with limited resources. As a third contribution, we propose a new approach for a lightweight salient objects detection deep neural network model, inspired by the double opponent process in the primary visual cortex, which inextricably links color and shape in human color perception. Our proposed model, namely CoSOV1net, is trained from scratch, without using any image classification backbones or other tasks. Experiments on the most used and challenging datasets for salient objects detection show that CoSOV1Net achieves competitive performance with state-of-the-art models, yet it is a lightweight detection model and it is a salient objects detection that can be adapted to mobile environments and resource-constrained devices

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Robust speaker identification against computer aided voice impersonation

    Get PDF
    Speaker Identification (SID) systems offer good performance in the case of noise free speech and most of the on-going research aims at improving their reliability in noisy environments. In ideal operating conditions very low identification error rates can be achieved. The low error rates suggest that SID systems can be used in real-life applications as an extra layer of security along with existing secure layers. They can, for instance, be used alongside a Personal Identification Number (PIN) or passwords. SID systems can also be used by law enforcements agencies as a detection system to track wanted people over voice communications networks. In this thesis, the performance of 'the existing SID systems against impersonation attacks is analysed and strategies to counteract them are discussed. A voice impersonation system is developed using Gaussian Mixture Modelling (GMM) utilizing Line Spectral Frequencies (LSF) as the features representing the spectral parameters of the source-target pair. Voice conversion systems based on probabilistic approaches suffer from the problem of over smoothing of the converted spectrum. A hybrid scheme using Linear Multivariate Regression and GMM, together with posterior probability smoothing is proposed to reduce over smoothing and alleviate the discontinuities in the converted speech. The converted voices are used to intrude a closed-set SID system in the scenarios of identity disguise and targeted speaker impersonation. The results of the intrusion suggest that in their present form the SID systems are vulnerable to deliberate voice conversion attacks. For impostors to transform their voices, a large volume of speech data is required, which may not be easily accessible. In the context of improving the performance of SID against deliberate impersonation attacks, the use of multiple classifiers is explored. Linear Prediction (LP) residual of the speech signal is also analysed for speaker-specific excitation information. A speaker identification system based on multiple classifier system, using features to describe the vocal tract and the LP residual is targeted by the impersonation system. The identification results provide an improvement in rejecting impostor claims when presented with converted voices. It is hoped that the findings in this thesis, can lead to the development of speaker identification systems which are better equipped to deal with the problem with deliberate voice impersonation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modelling, Simulation and Data Analysis in Acoustical Problems

    Get PDF
    Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years

    Proceedings. 22. Workshop Computational Intelligence, Dortmund, 6. - 7. Dezember 2012

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 22. Workshops "Computational Intelligence" des Fachausschusses 5.14 der VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA) der vom 6. - 7. Dezember 2012 in Dortmund stattgefunden hat. Die Schwerpunkte sind Methoden, Anwendungen und Tools für - Fuzzy-Systeme, - Künstliche Neuronale Netze, - Evolutionäre Algorithmen und - Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen Anwendungen und Benchmark-Problemen

    Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016)

    Get PDF

    Alzheimer’s Dementia Recognition Through Spontaneous Speech

    Get PDF
    corecore