262 research outputs found

    Magnetic Levitation – Modelling, Identification and Open Loop Verification

    Get PDF
    The paper describes a procedure using the first principle modelling and experimental identification of the Magnetic Levitation Model CE 152. It is a modified version of the paper [1]. The difference is that the identification and verification is done in open loop and constraints logic is added in the current paper. The author optimized and simplified dynamic model to a minimum to what is needed to characterize given system for the simulation and control design purposes. Only few open-loop experiments are needed to estimate the unknown parameters. Model quality is verified in open loop where the real and simulated data are compared. The model can serve as a simulation model for some standard control algorithms or as a process model for advanced control method design

    Modelling, Identification and Control of A" Magnetic Levitation CE152

    Get PDF
    43 unstable, it should be linearized at optional operating point and a digital PID controller with a fine tuned parameters is designed to track a small varying input signals. Finally the simulation’s model is validated with the real system, the results show the simulation’s model is adequately represents the real magnetic levitation system

    IMPLEMENTATION OF CONTROL ALGORITHMS IN BALL MAGNETIC LEVITATION SYSTEM TO IMPROVE SYSTEM PARAMETERS

    Get PDF
    Magnetic Levitation System (Maglev) is an approach which is currently widely applied in different areas like semiconductor, transportation, power generation, household appliances and etc. Since Magnetic Levitation System is a highly non-linear system, constructing a successful controller which has robust performance becomes a big challenge. The most conventional method of building Maglev is PID controller. However findings of controller’s parameters which ar

    PSO Tuned Flatness Based Control of a Magnetic Levitation System

    Get PDF
    Investigation on the application of flatness-based feedback linearization to the magnetic levitation model of INTECOTm Maglev system is presented in this paper. The MAGLEV system dynamics studied consists of a set of third order nonlinear differential equations. Using computational techniques proposed by Levine, it is verified that the ball position is the flat output. The derived flat output is applied in the construction of a nonlinear control law used to control the levitation to a set point as well as tracking a sine function trajectory. The controller gains are obtained and optimized using particle swarm optimization. The simulation results compared very well with the default PID control. Real-time and non real-time simulation using the MATLAB/ SIMULINK real workshop environment is presented

    Robustness and Control of a Magnetically Levitated Transportation System

    Get PDF
    Electromagnetic suspension of Magnetic Levitation Vehicles (Maglev) has been studied for many years as an alternative to wheel-on rail transportation systems. In this work, design and implementation of control systems for a Maglev laboratory experiment and a Maglev vehicle under development at Old Dominion University are described. Both plants are modeled and simulated with consideration of issues associated with system non-linearity, structural flexibility and electromagnetic force modeling. Discussion concerning different control strategies, namely centralized and decentralized approaches are compared and contrasted in this work. Different types of electromagnetic non-linearities are considered and described to establish a convenient method for modeling such a system. It is shown how a Finite Element structural model can be incorporated into the system to obtain transfer function notation. Influence of the dynamic interaction between the Maglev track and the Maglev vehicle is discussed and supported by both analytical results and theoretical examples. Finally, several control laws designed to obtain stable and robust levitation are explored in detail

    Nonlinear control systems laboratory

    Get PDF

    Application of local approximators for control of real mechatronic system

    Get PDF
    Cieľom práce je aplikácia lokálnych aproximátorov pre riadenie reálnych mechatronických sústav pomocou metódy dopredného riadenia predstavujúcej zaujímavú alternatívu k metódam využívajúcim globálne aproximátory. Po ukážkových príkladoch funkcie lokálnych aproximátorov bol navrhnutý algoritmus implementovaný pre riadenie dvoch sústav, elektronickej škrtiacej klapky a výukového modelu magnetickej levitácie, predstavujúcich vysoko nelineárne a nestabilné sústavy. Skúmali sme, či riadiaci algoritmus bude mať pozitívny vplyv na presnosť regulácie, ďalej bola skúmaná jeho schopnosť prispôsobiť sa zmene parametrov sústavy a tiež prípadná možnosť jeho implementácie pre mikrokontrolér znížením vzorkovacej frekvencie. Výsledky ukázali, že riadenie založené na lokálnych modeloch zlepšilo riadenie v porovnaní s jednoduchým PID regulátorom a že má schopnosť adaptability. Veľmi výhodné sa zdá byť jeho použitie pre zariadenia umožnujúce vzorkovaciu frekvenciu do 1 kHz.The main aim of this thesis is application of local approximators for control of real mechatronic systems by means of feed-forward control which represents a promising alternative to methods utilizing global approximators. After instances of how local approximators work they were implemented for control of two plants: electronic throttle and educational model of magnetic levitation, which both represent highly non-linear and unstable systems. It was observed whether the designed algorithm would improve the regulation accuracy, further its adaptability to to the plant's parameter change was tested and nally the convenience of its implementation for MCU was observed by lowering sample frequency. The results shows that local-models based control have improved regulation in comparison with PID used alone and that it is adaptable. Moreover, its utilization by MCUs providing sample frequency up to 1 kHz seems to be very advantageous.

    Piecewise adaptive controller design for position control of magnetic levitation system

    Get PDF
    Magnetic levitation is a new technology gaining popularity for use in many applications,the most notable being rail transportation. Magnetic levitation, or maglev, utilises high powered magnets to suspend objects off the ground. Electromagnets are known to exhibit severe nonlinear characteristics and providing precise control of position is no simple task. The ECP Model 730 magnetic levitation development system was studied in this project as the basis for the design of a suitable control system. The system model was developed and the system nonlinearities were identified. A linearised approximation of the system model was developed and a PID controller designed. The designed controller was simulated in Simulink and managed to force the magnet position to settle in 790 ms with 5.6% overshoot. It was found that nonlinearities caused the controller effectiveness to degrade as the magnet position moved away from the desired operating point. A piecewise model of the system was developed and controllers were designed to de- signed to work over the entire range of operation. An adaptive control strategy based on gain scheduling was implemented into the system and an improvement of 200 ms and 2.47% overshoot was observed for a 0.5 cm change in operating condition. The controller managed to switch between operating points but was shown to exhibit poor disturbance rejection when its position was continuously changed. Results suggested that an adaptive PID controller is capable of adapting to changes in its operating condition, but tuning it to achieve desired performance specifications is difficult, and other controllers may be more appropriate

    The Automatic Control Telelab: a remote control engineering laboratory

    Get PDF
    Describes the realization of a remote laboratory of automatic control developed at the University of Siena. The Automatic Control Telelab (ACT) allows the on-line interaction between remote users and a set of remote physical processes through the Internet. The key feature of this project is the user-defined controller facility. The remote user can design his/her own controller through the well-known Simulink environment. The overall architecture of the Automatic Control Telelaboratory has been designed with the goal of simplifying the upgrading procedure and the procedures to add new experiments

    Design and Implementation of One and Two-Degree-of-Freedom Magnetic Suspension and Balance Systems

    Get PDF
    The main objectives of this research were to design and implement one and two-degree-of-freedom (1 DOF and 2-DOF) magnetic levitation systems to levitate permanent magnet cores contained in PVC pipes, 8.4 cm and 76.2 cm in length, respectively. This project used the components of a Magnetic Suspension and Balance System (MSBS) that is being built to provide obstruction free positioning of test models in six degrees of freedom (6-DOF) inside the Princeton University/Office of Naval Research High Reynolds Number Test Facility (HRTF). The HRTF, a specialized wind tunnel designed to simulate undersea conditions by creating a low-speed, 3500 PSI air environment, imposes design challenges unique to this MSBS. Among these challenges are the need to control magnetic flux densities through the two-inch thick stainless steel walls of the suspension chamber and to suspend a heavy test object for long periods due to the limited access to the chamber\u27s interior
    corecore