226 research outputs found

    Energy conservation issues in the numerical solution of the semilinear wave equation

    Get PDF
    In this paper we discuss energy conservation issues related to the numerical solution of the nonlinear wave equation. As is well known, this problem can be cast as a Hamiltonian system that may be autonomous or not, depending on the specific boundary conditions at hand. We relate the conservation properties of the original problem to those of its semi-discrete version obtained by the method of lines. Subsequently, we show that the very same properties can be transferred to the solutions of the fully discretized problem, obtained by using energy-conserving methods in the HBVMs (Hamiltonian Boundary Value Methods) class. Similar arguments hold true for different types of Hamiltonian Partial Differential Equations, e.g., the nonlinear Schr\"odinger equation.Comment: 41 pages, 11 figur

    Analyses and Applications of the Peaceman--Rachford and Douglas--Rachford Splitting Schemes

    Get PDF
    Splitting methods are widely used as temporal discretizations of evolution equations. Such methods usually constitute competitive choices whenever a vector field can be split into a sum of two or more parts that each generates a flow easier to compute or approximate than the flow of the sum. In the research presented in this Licentiate thesis we consider dissipative evolution equations with vector fields given by unbounded operators. Dynamical systems that fit into this framework can for example be found among Hamiltonian systems and parabolic and hyperbolic partial differential equations (PDEs). The goal of the presented research is to perform convergence analyses for the lternating direction implicit (ADI) methods in the setting of dissipative operators. In this context these methods are known to possess excellent stability properties. Additionally, they generate easily computable numerical flows and are ideal choices for studying convergence to stationary solutions, a property related to their favorable local error structure. In this thesis we consider the Peaceman--Rachford and Douglas--Rachford schemes, which were the first ADI methods to be constructed and to this day are the most representative members of the ADI method class. We perform convergence studies for the Peaceman--Rachford and Douglas--Rachford schemes when applied to semilinear, dissipative evolution equations, that is, when the vector fields are given by the sum of a linear and a nonlinear dissipative operator. Optimal convergence orders are proven when the solution is sufficiently regular. With less regularity present we are still able to prove convergence, however of suboptimal order or without order. In contrast to previous convergence order analyses we do not assume Lipschitz continuity of the nonlinear operator. In the context of linear, dissipative evolution equations we consider full space-time discretizations. We assume that the full discretization is given by combining one of the two aforementioned ADI methods with a general, converging spatial discretization method. In this setting we prove optimal, simultaneous space-time convergence orders. Advection-diffusion-reaction models, encountered in physics, chemistry, and biology are important examples of dissipative evolution equations. In this thesis we present such a model describing the growth of axons in nerve cells. The model consists of a parabolic PDE, which has a non-trivial coupling to nonlinear ordinary differential equations via a moving boundary, which is part of the solution. Since additionally the biological model parameters imply a wide range of scales, both in time and space, the application of a numerical method is involved. We make an argument for a discretization consisting of a splitting which is integrated by the Peaceman--Rachford scheme. The choice is motivate by the results of some numerical experiments

    One-stage exponential integrators for nonlinear Schrödinger equations over long times

    Get PDF
    Near-conservation over long times of the actions, of the energy, of the mass and of the momentum along the numerical solution of the cubic Schrödinger equation with small initial data is shown. Spectral discretization in space and one-stage exponential integrators in time are used. The proofs use modulated Fourier expansion

    An overview on deep learning-based approximation methods for partial differential equations

    Full text link
    It is one of the most challenging problems in applied mathematics to approximatively solve high-dimensional partial differential equations (PDEs). Recently, several deep learning-based approximation algorithms for attacking this problem have been proposed and tested numerically on a number of examples of high-dimensional PDEs. This has given rise to a lively field of research in which deep learning-based methods and related Monte Carlo methods are applied to the approximation of high-dimensional PDEs. In this article we offer an introduction to this field of research, we review some of the main ideas of deep learning-based approximation methods for PDEs, we revisit one of the central mathematical results for deep neural network approximations for PDEs, and we provide an overview of the recent literature in this area of research.Comment: 23 page
    • …
    corecore