4,882 research outputs found

    Detection of replay attacks in CPSs using observer-based signature compensation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a replay attack detection method that addresses the performance loss of watermarking-based approaches. The proposed method injects a sinusoidal signal that affects a subset, chosen at random, of the system outputs. The presence of the signal in each one of the outputs is estimated by means of independent observers and its effect is compensated in the control loop. When a system output is affected by a replay attack, the loss of feedback of the associated observer destabilizes the signal estimation, leading to an exponential increase of the estimation error up to a threshold, above which the estimated signal compensation in the control loop is disabled. This event triggers the detection of a replay attack over the output corresponding to the disrupted observer. The effectiveness of the method is demonstrated using results obtained with a quadruple-tank system simulator.Peer ReviewedPostprint (author's final draft

    Permanent Magnet Synchronous Motors are Globally Asymptotically Stabilizable with PI Current Control

    Get PDF
    This note shows that the industry standard desired equilibrium for permanent magnet synchronous motors (i.e., maximum torque per Ampere) can be globally asymptotically stabilized with a PI control around the current errors, provided some viscous friction (possibly small) is present in the rotor dynamics and the proportional gain of the PI is suitably chosen. Instrumental to establish this surprising result is the proof that the map from voltages to currents of the incremental model of the motor satisfies some passivity properties. The analysis relies on basic Lyapunov theory making the result available to a wide audience

    Robust Intrusion Detection for Resilience Enhancement of Industrial Control Systems: An Extended State Observer Approach

    Get PDF
    We address the problem of attack signal estimation in industrial control systems that are subjected to actuator false data injection attack (FDIA) and where the sensor measurements are corrupted by non-negligible high-frequency measurement noise. The actuator FDIA signal is categorized as disturbance to be estimated and subsequently compensated, based on the concept of extended state observer (ESO). We investigate the efficacy of two alternatives to conventional ESO namely, cascade ESO (CESO) and low-power higher-order ESO (LHESO), that guarantee improved estimation performance in case of noisy measurement data as well as time-varying attack signals. Simu-lation and experimental results under different types of FDIAs demonstrate the advantages of designed schemes in comparison to conventional linear and nonlinear ESOs, using network motion control system as an illustrative example. The results highlight the limitations of conventional ESO under noisy measurement data, particularly nonlinear ESO which is based on fal(·) function and commonly used in control literature

    Sliding mode estimation schemes for incipient sensor faults

    Get PDF
    This is the author's preprint vetrsion of an articles submitted to Automatica. The definitive published version is available via doi:10.1016/j.automatica.2009.02.031This paper proposes a new method for the analysis and design of sliding mode observers for sensor fault reconstruction. The proposed scheme addresses one of the restrictions inherent in other sliding mode estimation approaches for sensor faults in the literature (which effectively require the open-loop system to be stable). For open-loop unstable systems, examples can be found, for certain combinations of sensor faults, for which existing sliding mode and unknown input linear observer schemes cannot be employed, to reconstruct faults. The method proposed in this paper overcomes these limitations. Simulation results demonstrate the effectiveness of the design framework proposed in the paper. © 2009 Elsevier Ltd. All rights reserved
    • …
    corecore