55 research outputs found

    Machine Learning for Identification and Optimal Control of Advanced Automotive Engines.

    Full text link
    The complexity of automotive engines continues to increase to meet increasing performance requirements such as high fuel economy and low emissions. The increased sensing capabilities associated with such systems generate a large volume of informative data. With advancements in computing technologies, predictive models of complex dynamic systems useful for diagnostics and controls can be developed using data based learning. Such models have a short development time and can serve as alternatives to traditional physics based modeling. In this thesis, the modeling and control problem of an advanced automotive engine, the homogeneous charge compression ignition (HCCI) engine, is addressed using data based learning techniques. Several frameworks including design of experiments for data generation, identification of HCCI combustion variables, modeling the HCCI operating envelope and model predictive control have been developed and analyzed. In addition, stable online learning algorithms for a general class of nonlinear systems have been developed using extreme learning machine (ELM) model structure.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102392/1/vijai_1.pd

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    A Study Model Predictive Control for Spark Ignition Engine Management and Testing

    Get PDF
    Pressure to improve spark-ignition (SI) engine fuel economy has driven thedevelopment and integration of many control actuators, creating complex controlsystems. Integration of a high number of control actuators into traditional map basedcontrollers creates tremendous challenges since each actuator exponentially increasescalibration time and investment. Model Predictive Control (MPC) strategies have thepotential to better manage this high complexity since they provide near-optimal controlactions based on system models. This research work focuses on investigating somepractical issues of applying MPC with SI engine control and testing.Starting from one dimensional combustion phasing control using spark timing(SPKT), this dissertation discusses challenges of computing the optimal control actionswith complex engine models. A nonlinear optimization is formulated to compute thedesired spark timing in real time, while considering knock and combustion variationconstraints. Three numerical approaches are proposed to directly utilize complex high-fidelity combustion models to find the optimal SPKT. A model based combustionphasing estimator that considers the influence of cycle-by-cycle combustion variations isalso integrated into the control system, making feedback and adaption functions possible.An MPC based engine management system with a higher number of controldimensions is also investigated. The control objective is manipulating throttle, externalEGR valve and SPKT to provide demanded torque (IMEP) output with minimum fuelconsumption. A cascaded control structure is introduced to simplify the formulation and solution of the MPC problem that solves for desired control actions. Sequential quadratic programming (SQP) MPC is applied to solve the nonlinear optimization problem in real time. A real-time linearization technique is used to formulate the sub-QP problems with the complex high dimensional engine system. Techniques to simplify the formulation of SQP and improve its convergence performance are also discussed in the context of tracking MPC. Strategies to accelerate online quadratic programming (QP) are explored. It is proposed to use pattern recognition techniques to “warm-start” active set QP algorithms for general linear MPC applications. The proposed linear time varying (LTV) MPC is used in Engine-in-Loop (EIL) testing to mimic the pedal actuations of human drivers who foresee the incoming traffic conditions. For SQP applications, the MPC is initialized with optimal control actions predicted by an ANN. Both proposed MPC methods significantly reduce execution time with minimal additional memory requirement

    IDENTIFICATION OF HEAT RELEASE SHAPES AND COMBUSTION CONTROL OF AN LTC ENGINE

    Get PDF
    Low Temperature Combustion (LTC) regimes have gained attention in internal combustion engines since they deliver low nitrogen oxides (NOx) and soot emissions with higher thermal efficiency and better combustion efficiency, compared to conventional combustion regimes. However, the operating region of these high-efficiency combustion regimes is limited as it is prone to knocking and high in-cylinder pressure rise rate outside the engine safe zone. By allowing multi-regime operation, high-efficiency region of the engine is extended. To control these complex engines, understanding and identification of heat release rate shapes is essential. Experimental data collected from a 2 liter 4 cylinder LTC engine with in-cylinder pressure measurements, is used in this study to calculate Heat Release Rate (HRR). Fractions of early and late heat release are calculated from HRR as a ratio of cumulative heat release in the early or late window to the total energy of the fuel injected into the cylinder. Three specific HRR patterns and two transition zones are identified. A rule based algorithm is developed to classify these patterns as a function of fraction of early and late heat release percentages. Combustion parameters evaluated also showed evidence on characteristics of classification. Supervised and unsupervised machine learning approaches are also evaluated to classify the HRR shapes. Supervised learning method ( Decision Tree)is studied to develop an automatic classifier based on the control inputs to the engine. In addition, supervised learning method (Convolutional Neural Network (CNN)) and unsupervised learning method (k-means clustering) are studied to develop an automatic classifier based on HRR trace obtained from the engine. The unsupervised learning approach wasn\u27t successful in classification as the arrived k-means centroids didn\u27t clearly represent a particular combustion regime. Supervised learning techniques, CNN method is found with a classifier accuracy of 70% for identifying heat release shapes and Decision Tree with the accuracy of 74.5% as a function of control inputs. On rule based classified traces with the use of principle component analysis (PCA) and linear regression, heat release rate classifiers are built as a function of engine input parameters including, Engine speed, Start of injection (SOI), Fuel quantity (FQ) and Premixed ratio (PR). The results are then used to build a linear parameter varying (LPV) model as a function of the modelled combustion classifiers by using the least square support vector machine (LS-SVM) approach. LPV model could predict CA50(Combustion phasing), IMEP (indicated mean effective pressure) and MPRR (maximum pressure rise rate) with a RMSE of 0.4 CAD, 16.6 kPa and 0.4 bar/CAD respectively. The designed LPV model is then incorporated in a model predictive control (MPC) platform to adjust CA50, IMEP and MPRR. The results show the designed LTC engine controller could track CA50 and IMEP with average error of 1.2 CAD and 6.2 kPa while limiting MPRR to 6 bar/CAD. The controller uses three engine inputs including, SOI, PR and FQ as manipulated variables, that are optimally changed to control the LTC engine

    Reactivity controlled compression ignition engine: Pathways towards commercial viability

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/).Reactivity-controlled compression ignition (RCCI) is a promising energy conversion strategy to increase fuel efficiency and reduce nitrogen oxide (NOx) and soot emissions through improved in-cylinder combustion process. Considering the significant amount of conducted research and development on RCCI concept, the majority of the work has been performed under steady-state conditions. However, most thermal propulsion systems in transportation applications require operation under transient conditions. In the RCCI concept, it is crucial to investigate transient behavior over entire load conditions in order to minimize the engine-out emissions and meet new real driving emissions (RDE) legislation. This would help further close the gap between steady-state and transient operation in order to implement the RCCI concept into mass production. This work provides a comprehensive review of the performance and emissions analyses of the RCCI engines with the consideration of transient effects and vehicular applications. For this purpose, various simulation and experimental studies have been reviewed implementing different control strategies like control-oriented models particularly in dual-mode operating conditions. In addition, the application of the RCCI strategy in hybrid electric vehicle platforms using renewable fuels is also discussed. The discussion of the present review paper provides important insights for future research on the RCCI concept as a commercially viable energy conversion strategy for automotive applications.Peer reviewe

    Data-Driven Model for Real-Time Estimation of NOx in a Heavy-Duty Diesel Engine

    Get PDF
    The automotive sector is greatly contributing to pollutant emissions and recent regulations introduced the need for a major control of, and reduction of, internal combustion engine emissions. Artificial intelligence (AI) algorithms have proven to hold the potential to be the thrust in the state-of-the-art for engine-out emission prediction, thus enabling tailored calibration modes and control solutions. More specifically, the scientific literature has recently witnessed strong efforts in AI applications for the development of nitrogen oxides (NOx) virtual sensors. These latter replace physical sensors and exploit AI algorithms to estimate NOx concentrations in real-time. Still, the calibration of the algorithms, together with the appropriate choice of the specific metric, strongly affects the prediction capability. In the present paper, a machine learning-based virtual sensor for NOx monitoring in diesel engines was developed, based on the Extreme Gradient Boosting (XGBoost) machine learning algorithm. The latter is commonly used in the literature to deploy virtual sensors due to its high performance, flexibility and robustness. An experimental campaign was carried out to collect data from the engine test bench, as well as from the engine electronic control unit (ECU), for the development and calibration of the virtual sensor at steady-state conditions. The virtual sensor has, since then, been tested throughout on an on-road driving mission to assess its prediction performance in dynamic conditions. In stationary conditions, its prediction accuracy was around 98%, whereas it was 85% in transient conditions. The present study shows that AI-based virtual sensors have the potential to significantly improve the accuracy and reliability of NOx monitoring in diesel engines, and can, therefore, play a key role in reducing NOx emissions and improving air quality
    • …
    corecore