65 research outputs found

    Methods for modeling degradation of electrical engineering components for lifetime prognosis

    Get PDF
    Reliability of electrical components is an issue studied to improve the quality of products, and to plan maintenance in case of failure. Reliability is measured by studying the causes of failure and the mean time to failure. One of the methods applied in this field is the study of component aging, because failure often occurs after degradation. The objective of this thesis is to model the degradation of components in electrical engineering, in order to estimate their lifetime. More specifically, this thesis will study large area organic white light sources (OLEDs). These sources offer several advantages in the world of lighting thanks to their thinness, their low energy consumption and their ability to adapt to a wide range of applications. The second components studied are electrical insulators applied to pairs of twisted copper wires, which are commonly used in low voltage electrical machines. First, the degradation and failure mechanisms of the various electrical components, including OLEDs and insulators, are studied. This is done to identify the operational stresses for including them in the aging model. After identifying the main causes of aging, general physical models are studied to quantify the effects of operational stresses. Empirical models are also presented when the physics of degradation is unknown or difficult to model. Next, methods for estimating the parameters of these models are presented, such as multilinear and nonlinear regression, as well as stochastic methods. Other methods based on artificial intelliยญgence and online diagnosis are also presented, but they will not be studied in this thesis. These methods are applied to degradation data of organic LEDs and twisted pair insulators. For this purpose, accelerated and multifactor aging test benches are designed based on factorial experimental designs and response surface methods, in order to optimize the cost of the experiments. Then, a measurement protocol is described, in order to optimize the inspection time and to collect periodic data. Finally, estimation methods tackle unconstrained deterministic degradation models based on the measured data. The best empirical model of the degradation trajectory is then chosen based on model selection criteria. In a second step, the parameters of the degradation trajectories are modeled based on operational constraints. The parameters of the aging factors and their interactions are estimated by multilinear regression and according to different learning sets. The significance of the parameters is evaluated by statistical methods if possible. Finally, the lifetime of the experiments in the validation sets is predicted based on the parameters estimated by the different learning sets. The training set with the best lifetime prediction rate is considered the best

    ์œ ๊ธฐ๋ฐœ๊ด‘์†Œ์ž์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ์™€ ๋ฐฐํ–ฅ ๋ถ„๊ทน ๋ถ„์ž์˜ ํšจ๊ณผ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2020. 8. ๊น€์žฅ์ฃผ.Since the first electroluminescence (EL) of organic compound was observed in the anthracene single crystal in 1965, organic light-emitting diodes (OLEDs) have undergone numerous developments, and have recently become the mainstream of small-sized displays. In addition, as OLEDs will have a modest substrate dependency, it has the potential to receive even more attention as the next generation display like flexible or transparent displays. The remaining challenges for OLEDs are high efficiency, and operational stability. In general, because organic materials have a wide emission spectrum, OLED can be a good lighting with a high color rendering index (CRI). It can also be used as a display with high color purity by optimizing the cavity length. However, more than half of the photons generated in OLEDs are dissipated due to total internal reflection by high-refractive-index organic layers and the substrate. Therefore, light extraction technology is required to increase the efficiency and reduce the power consumption of OLEDs. In addition, as mentioned before, it is necessary to consider the lifetime of the device. There have been many studies on the short operation lifetime of OLEDs, and several mechanisms have been proposed, but there is no concrete description of the origin of degradation. Nonetheless, it is obvious that the stability of the layers constituting the OLED should be considered for high operational stability. This thesis concerns two research topics: (1) simple and efficient light extraction method for OLED lighting and display, and (2) improving operation lifetime of OLED using spontaneous orientation polarization molecule. In chapter 1, a brief introduction of OLEDs will be provided. In chapter 2, a facile and effective method for fabricating random organic microstructures for efficient light extraction from blue OLEDs is presented. Simple drop casting of a TCTA and B4PyMPM mixed solution followed by UV curing results in films with irregular-shaped microstructures (DACMs), ideal for light extraction without diffraction patterns. An external quantum efficiency (EQE) of 44.3% is realized by attaching DACMs formed on a polymer film to a blue phosphorescent OLED. The efficiency is improved by 35% compared to a planar device without the light extraction layer, greater than the 22% improvement obtained by using microlens arrays. The method is useful for OLED lighting and potentially in displays because of the simple fabrication method that is applicable to a large area on rigid or flexible substrates, the low material cost, the insolubility of the microstructure in alkyl halide solvents such as chloroform, and the controllability of the structure through the solution process. In chapter 3, we show the damageless light extraction structure for top-emittng organic light-emitting diodes (TEOLEDs). TEOLEDs are used in small displays, due to the high aperture ratios, unblurred imaging, and high color purity. However, the strong cavity structures responsible for these advantages result in a high optical loss within metal electrodes. Furthermore, as there is no substrate in the light path, it is rather complicated to form a structure on the emission surface without damage. Here, we present a facile and effective method for light extraction of TEOLEDs. When 1,5-diaminoanthraquinone (DAAQ) is deposited on the Ag electrode, crystallization occurs immediately and nanowire arrays are formed in the out-of-plane direction. The shape and distribution of nanowire arrays can be controlled by deposition thickness and evaporation rate. In addition, morphological changes affect the transmittance of DAAQ-deposited Ag thin films. DAAQ nanowire arrays were applied to a red phosphorescent inverted TEOLED, enhancing the external quantum efficiency (EQE) by 8.6% in a narrow full-width-at-half-maximum (FWHM) device, and by 10.6% in a wide FWHM device. The emission spectra of the out-coupled devices are similar to those of the reference devices, as the DAAQ layer is located outside the OLED stacks sandwiched between two highly reflective metal electrodes. The method is useful for OLED displays because it is simple, vacuum-processable, and does not compromise device lifetime or the emission spectrum. In chapter 4, we suggest the importance of patternability of internal light extraction layer. Integration of internal light extraction layers in OLED displays requires electrical connection between driving circuits in the backplane and an OLED electrode, therefore needs fabrication of a via hole. Generally, internal light extraction layers consist of two materials with different refractive indices; thus, good patternability may be difficult with the matched etch selectivities of these two materials. Both the patternability of the internal light extraction layer and high out-coupling efficiency are important so, it needs a proper etchant which arent lowering the extraction efficiency by demolishing its structure. Here, the patternability of light extraction layers is discussed and demonstrated experimentally. The random scattering layer (RSL) composed of SiOx nano scatterers and a TiO2 planarization layer was used in this study and it was patterned by photolithography and wet etching processes. For matching the etching selectivity of those two different materials, a mixture of buffered oxide etchant (BOE) and phosphoric acid (H3PO4), in a volume ratio of 0.5 of H3PO4 to BOE, shows the best results for forming electrical channels through the out-coupling layer. The OLEDs fabricated on this patterned substrate showed similar current density-voltage (J-V) characteristics to OLEDs on a glass substrate with low leakage levels. The device showed over 50% enhancement of external quantum efficiency (EQE; from 21.7% to 32.7%), similar to the device without via holes. Chapter 5 contains a method for improving the stability of electron transporting layer. After the alignment of permanent dipole moment (PDM) was found in Alq3, it was revealed that spontaneous orientation polarization (SOP) was observed in several electron transporting materials. Although studies on the electrical effects of the polarization have been reported, there are few reports on the effects of polarization on the lifetime of device. Here, we observed the SOP characteristics and the change in the lifetime of device when BAlq was doped in PO-T2T with different volume ratios. As the polarization increased, the operation lifetime also increased and the applied voltage change decreased. In addition, the lifetime enhancement was only observed when there was a polarized layer at the interface with the emtting layer (EML). This shows that hole blocking layer (HBL) can enhance the lifetime when it has a negative surface charge at the interface with EML, and also indicates that the SOP characteristics of the molecule should be considered for improving the lifetime.1965 ๋…„, ์•ˆํŠธ๋ผ์„ผ ๋‹จ๊ฒฐ์ •์—์„œ ์œ ๊ธฐ๋ฌผ์˜ ์ฒซ ์ „๊ธฐ ๋ฐœ๊ด‘์ด ๋ฐœ๊ฒฌ๋œ ์ดํ›„, ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋Š” ๋งŽ์€ ๋ฐœ์ „์„ ๊ฑฐ๋“ญํ•ด ์ตœ๊ทผ ์†Œํ˜• ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ฃผ๋ฅ˜๋ฅผ ์ด๋ค˜๋‹ค. ๋˜ํ•œ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋Š” ์ ์€ ๊ธฐํŒ ์˜์กด์„ฑ์„ ๊ฐ–๊ธฐ ๋•Œ๋ฌธ์— ํ”Œ๋ ‰์‹œ๋ธ” ๋””์Šคํ”Œ๋ ˆ์ด๋‚˜ ํˆฌ๋ช… ๋””์Šคํ”Œ๋ ˆ์ด์™€ ๊ฐ™์€ ์ฐจ์„ธ๋Œ€ ๋””์Šคํ”Œ๋ ˆ์ด๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ๋ ฅ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์—์„œ ๋‚จ์€ ๊ณผ์ œ๋Š” ๋†’์€ ํšจ์œจ๊ณผ ๊ตฌ๋™ ์•ˆ์ •์„ฑ์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์œ ๊ธฐ๋ฌผ์€ ๋„“์€ ๋ฐœ๊ด‘์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ณด์ด๊ธฐ ๋•Œ๋ฌธ์—, ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋Š” ์—ฐ์ƒ‰์„ฑ์ด ๋†’์€ ์กฐ๋ช…์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๊ด‘ํ•™ ๊ณต์ง„ ๊ตฌ์กฐ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ๋†’์€ ์ƒ‰์ˆœ๋„์˜ ๋””์Šคํ”Œ๋ ˆ์ด๋กœ๋„ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๊ฐ€ ๋ฐฉ์ถœํ•œ ๊ด‘์ž์˜ ์ ˆ๋ฐ˜ ์ด์ƒ์€ ๋†’์€ ๊ตด์ ˆ๋ฅ ์˜ ์œ ๊ธฐ๋ฌผ ๋ฐ ๊ธฐํŒ์œผ๋กœ ์ธํ•œ ๋‚ด๋ถ€ ์ „๋ฐ˜์‚ฌ๋กœ ์†Œ๋ฉธ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ํšจ์œจ์„ ์˜ฌ๋ฆฌ๊ณ  ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ด‘์ถ”์ถœ ๊ธฐ์ˆ ์€ ํ•„์š”ํ•˜๋‹ค. ์ด์— ๋”๋ถˆ์–ด, ์œ„์—์„œ ์–ธ๊ธ‰ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ์†Œ์ž์˜ ๊ตฌ๋™์‹œ๊ฐ„์— ๋Œ€ํ•œ ๊ณ ๋ ค๋„ ํ•„์š”ํ•˜๋‹ค. ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ์งง์€ ๊ตฌ๋™ ์ˆ˜๋ช…์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋งŽ์ด ์žˆ๊ณ , ๋ช‡๋ช‡ ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ๋ฐœํ‘œ๋˜์—ˆ์ง€๋งŒ, ์•„์ง ์†Œ์ž ์—ดํ™”์˜ ์ „๋ฐ˜์„ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ก ์€ ์ „๋ฌดํ•˜๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋†’์€ ๊ตฌ๋™ ์•ˆ์ •์„ฑ์„ ์œ„ํ•ด์„  ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ธต์˜ ์•ˆ์ •์„ฑ์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋Š” ๊ฒƒ์€ ์ž๋ช…ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ 2 ๊ฐ€์ง€ ์—ฐ๊ตฌ์ฃผ์ œ: (1) ๋‹จ์ˆœํ•˜๋ฉด์„œ๋„ ํšจ์œจ์ ์ธ ์กฐ๋ช…์šฉ ๊ทธ๋ฆฌ๊ณ  ๋””์Šคํ”Œ๋ ˆ์ด์šฉ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ, ๊ทธ๋ฆฌ๊ณ  (2) ์ž๋ฐœ์  ๋ฐฐํ–ฅ ๋ถ„๊ทน ๋ถ„์ž๋ฅผ ํ™œ์šฉํ•œ ์†Œ์ž์˜ ์ˆ˜๋ช… ํ–ฅ์ƒ์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ œ1 ์žฅ์€ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์— ๋Œ€ํ•œ ๊ฐ„๋žตํ•œ ์„œ๋ก ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ์ œ2 ์žฅ์€ ํŒŒ๋ž€์ƒ‰ ํ•˜๋ถ€ ๋ฐœ๊ด‘ํ˜• ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ์™ธ๋ถ€ ๊ด‘์ถ”์ถœ ํšจ์œจ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์†์‰ฌ์šฐ๋ฉด์„œ๋„ ํšจ์œจ์ ์ธ ๋žœ๋ค ์œ ๊ธฐ ๋งˆ์ดํฌ๋กœ ๊ตฌ์กฐ (DACM)์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. TCTA์™€ B4PyMPM ํ˜ผํ•ฉ ์šฉ์•ก์„ ํ•„๋ฆ„์— ๋“œ๋กญ ์บ์ŠคํŒ… ํ›„ UV ๊ฒฝํ™” ์‹œํ‚ค๋ฉด ๋ฌด์ž‘์œ„ ๋ชจ์–‘์˜ ๋งˆ์ดํฌ๋กœ ๊ตฌ์กฐ๋ฌผ์ด ํ˜•์„ฑ๋˜์—ˆ๊ณ , ํšŒ์ ˆ ๋ฌด๋Šฌ๊ฐ€ ์—†์–ด ๊ด‘์ถ”์ถœ๋กœ ์ ํ•ฉํ–ˆ๋‹ค. DACM ํ•„๋ฆ„์„ ๋ถ€์ฐฉํ•œ ์†Œ์ž๋Š” 44.3%์˜ ์™ธ๋ถ€ ๊ด‘์ž ํšจ์œจ์„ ๊ฐ€์กŒ๊ณ , ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ๊ฐ€ ์—†๋Š” ์†Œ์ž ํ‰ํŒ ์†Œ์ž ๋Œ€๋น„ 35%์˜ ํ–ฅ์ƒ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ ์–ด๋ ˆ์ด ํ•„๋ฆ„์— ํ–ฅ์ƒ๋Ÿ‰์ธ 22% ๋ณด๋‹ค ๋†’์€ ์ˆ˜์น˜๋ฅผ ๊ธฐ๋กํ–ˆ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ๊ธฐํŒ์— ์ƒ๊ด€์—†์ด ๋Œ€๋ฉด์  ๊ณต์ •์ด ๊ฐ€๋Šฅํ•˜๊ณ , ์ €๋ ดํ•œ ์ œ์ž‘ ๊ณต์ •, ํด๋กœ๋กœํฌ๋ฆ„๊ณผ ๊ฐ™์€ ์•Œํ‚ฌ ํ• ๋ผ์ด๋“œ ์šฉ๋งค์— ๊ฐ•ํ–ˆ์œผ๋ฉฐ, ๊ตฌ์กฐ ์ปจํŠธ๋กค๋„ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์กฐ๋ช…์šฉ์œผ๋กœ ๋งค์šฐ ํšจ์œจ์ ์ด๊ณ , ๋””์Šคํ”Œ๋ ˆ์ด์šฉ์œผ๋กœ ํ™œ์šฉ๋  ์ž ์žฌ๋ ฅ์ด ์žˆ๋‹ค. ์ œ3 ์žฅ์€ ์ง„๊ณต ์—ด์ฆ์ฐฉ์„ ํ†ตํ•ด ์†์ƒ ์—†์ด ํ˜•์„ฑํ•œ ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์šฉ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์†Œ์ž๋Š” ๋†’์€ ํ”ฝ์…€ ์ข…ํšก๋น„, ํ๋ ค์ง ์—†๋Š” ์ด๋ฏธ์ง•, ๋†’์€ ์ƒ‰ ์ˆœ๋„๋กœ ์ธํ•ด ์†Œํ˜• ๋””์Šคํ”Œ๋ ˆ์ด์— ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ด์ ์„ ์–ป๋Š” ๊ฐ•๊ณต์ง„ ๊ตฌ์กฐ๋Š” ๊ธˆ์† ์ „๊ทน์— ์˜ํ•œ ๋†’์€ ๊ด‘ํ•™ ์†์‹ค์„ ์•ผ๊ธฐํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์†Œ์ž์—๋Š” ๋น›์˜ ๊ฒฝ๋กœ์— ๊ธฐํŒ์ด ์—†๋Š” ๊นŒ๋‹ญ์— ์†์ƒ ์—†๋Š” ๊ณต์ •์ด ์–ด๋ ต๋‹ค. ์šฐ๋ฆฌ๋Š” 1,5-diaminoanthraquinone (DAAQ) ์œ ๊ธฐ๋ฌผ์˜ ์ง„๊ณต ์—ด์ฆ์ฐฉ์„ ํ†ตํ•ด ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์†Œ์ž์˜ ์€ (Ag) ๋ฐ•๋ง‰ ์œ„์— ์†์ƒ ์—†์ด ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ–ˆ๋‹ค. DAAQ๋Š” ์€ ๋ฐ•๋ง‰ ์œ„์—์„œ ์ฆ์ฐฉ ์ฆ‰์‹œ ๊ฒฐ์ •ํ™”๋˜์—ˆ์œผ๋ฉฐ, ๊ธฐํŒ์— ์ˆ˜์ง ๋ฐฉํ–ฅ์œผ๋กœ ๋‚˜๋…ธ์™€์ด์–ด๋ฅผ ํ˜•์„ฑํ–ˆ๋‹ค. ๋‚˜๋…ธ์™€์ด์–ด ์–ด๋ž˜์ด์˜ ๋†’์ด, ๋‘˜๋ ˆ, ๊ทธ๋ฆฌ๊ณ  ์ฃผ๊ธฐ๋Š” ์ฆ์ฐฉ ์†๋„ ๋ฐ ๋‘๊ป˜๋กœ ์กฐ์ ˆ ๊ฐ€๋Šฅํ–ˆ๋‹ค. ์ด๋ฅผ ์ƒ๋ถ€ ๋ฐœ๊ด‘ํ˜• ์†Œ์ž์— ์ ‘๋ชฉ์‹œ์ผฐ๊ณ , ์ข์€ ๋ฐ˜์น˜ํญ์˜ ์†Œ์ž์—์„œ๋Š” 8.6%, ๋„“์€ ๋ฐ˜์น˜ํญ์˜ ์†Œ์ž์—์„œ๋Š” 10.6%์˜ ํ–ฅ์ƒ๋Ÿ‰์„ ์–ป์—ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์‰ฌ์šฐ๋ฉฐ, ์†Œ์ž์— ์†์ƒ์„ ์ฃผ์ง€ ์•Š์•„ ์—ดํ™” ์‹œํ‚ค์ง€ ์•Š์œผ๋ฉฐ, ํŒจํ„ฐ๋‹ ๊ณต์ •์ด ํ•„์š” ์—†๊ณ , ์ง„๊ณต๊ณต์ •์ด ๊ฐ€๋Šฅํ•œ ๊นŒ๋‹ญ์— ๋งค์šฐ ์œ ์šฉํ•˜๋‹ค. ์ œ4 ์žฅ์€ ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ์˜ ํŒจํ„ฐ๋‹ ํŠน์„ฑ์˜ ์ค‘์š”์„ฑ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•œ๋‹ค. ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ๋ฅผ ๋””์Šคํ”Œ๋ ˆ์ด์— ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„  ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ (TFT) ์™€ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž ์ „๊ทน ์‚ฌ์ด์— ์‹ ํ˜ธ๋ฅผ ์ฃผ๊ณ ๋ฐ›์„ ์ˆ˜ ์žˆ๋Š” ํ†ต๋กœ, ์ฆ‰ ๋น„์•„ํ™€ (viahole) ์ด ํ•„์š”ํ•˜๋‹ค. ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ๋Š” ์œ„์น˜๊ฐ€ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์™€ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž ์‚ฌ์ด์— ์œ„์น˜ํ•œ ๊นŒ๋‹ญ์—, ๊ตฌ์กฐ ์„ค๊ณ„ ์‹œ viahole ํŒจํ„ฐ๋‹์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜์ง€๋งŒ, ์ง€๊ธˆ๊นŒ์ง€ ์ด๋Ÿฐ ๊ณ ๋ ค๋Š” ์ ์—ˆ๋‹ค. ๋˜ํ•œ, ์ผ๋ฐ˜์ ์ธ ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ๊ตฌ์กฐ๋Š” ๊ณ  ๊ตด์ ˆ ๋ฌผ์งˆ ๋‚ด์—, ๋‚ฎ์€ ๊ตด์ ˆ๋ฅ ์˜ ๊ด‘ ๊ฒฐ์ •์ด ์œ„์น˜ํ•˜๋Š”๋ฐ, ์ด์ข…์˜ ๋ฌผ์งˆ์€ ์‹๊ฐ ์šฉ์•ก์— ๋Œ€ํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ์—์นญ ์„ ํƒ๋น„ (etching selectivity)๋ฅผ ๊ฐ–๊ธฐ ๋•Œ๋ฌธ์—, ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ๊ตฌ์กฐ์˜ ์†์ƒ ์—†์ด ํŒจํ„ฐ๋‹์ด ๊ฐ€๋Šฅํ•œ ์‹๊ฐ ์šฉ์•ก์„ ์ฐพ๋Š” ๊ฒƒ ๋˜ํ•œ ํ•„์š”ํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” SiOx ์Šค์บํ„ฐ์™€ TiO2 ํ‰ํƒ„์ธต์„ ๊ฐ–๋Š” ๋‚ด๋ถ€ ๊ด‘์ถ”์ถœ ๊ตฌ์กฐ์˜ ๋น„์•„ํ™€ ํŒจํ„ฐ๋‹์„ ์„ฑ๊ณต์ ์œผ๋กœ ๊ตฌํ˜„ํ•œ ์†Œ์ž๋ฅผ ๋ณด๊ณ ํ•œ๋‹ค. SiOx์™€ TiO2์— ๋Œ€ํ•ด ์œ ์‚ฌํ•œ ์—์นญ ์„ ํƒ๋น„๋ฅผ ๊ฐ–๋Š” buffered oxide etchant (BOE) ์™€ ์ธ์‚ฐ (H3PO4) ์˜ ํ˜ผํ•ฉ ์‹๊ฐ ์šฉ์•ก์„ ํ™œ์šฉํ•ด ์–ธ๋”์ปท (undercut) ๋ฌธ์ œ๊ฐ€ ํ•ด๊ฒฐ๋œ ๋น„์•„ํ™€ ํŒจํ„ฐ๋‹ ๊ณต์ •์„ ํ™•๋ฆฝํ–ˆ์œผ๋ฉฐ, ์ œ์ž‘๋œ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ๋‚ฎ์€ ๋ˆ„์„ค ์ „๋ฅ˜ ๋ฐ ์†์ƒ ์—†๋Š” ๊ด‘์ถ”์ถœ ํšจ์œจ์„ ํ†ตํ•ด ๋น„์•„ํ™€ ํŒจํ„ฐ๋‹์ด ์„ฑ๊ณต์ ์œผ๋กœ ๋˜์—ˆ์Œ์„ ์‹คํ—˜์ ์œผ๋กœ ๋ณด์˜€๋‹ค. ์ œ5์žฅ์€ ์ „์ž ์ „๋‹ฌ์ธต (Electron transporting layer, ETL) ์˜ ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ์˜๊ตฌ ์Œ๊ทน์ž ๋ชจ๋ฉ˜ํŠธ (permanent dipole moment)์˜ ์ •๋ ฌ์ด ๋น„์ •์งˆ์˜ Alq3 ์œ ๊ธฐ๋ฌผ์—์„œ๋„ ๋ฐœํ˜„๋จ์„ ๋ฐœ๊ฒฌํ•œ ์ดํ›„, ์—ฌ๋Ÿฌ ์ „์ž์ „๋‹ฌ๋ฌผ์งˆ์—์„œ ์ด๋Ÿฌํ•œ ํŠน์„ฑ (๋ฐฐํ–ฅ ๋ถ„๊ทน, orientation polarization)์ด ๋‚˜ํƒ€๋‚จ์ด ๋ฐํ˜€์กŒ๋‹ค. ์ง€๊ธˆ๊นŒ์ง„ ๋ฐฐํ–ฅ ๋ถ„๊ทน์ด ์†Œ์ž์˜ ์ „๊ธฐ์  ํŠน์„ฑ์— ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ๋ผ์น˜๋Š”์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋ฅ˜๋ฅผ ์ด๋ค˜๋‹ค. ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๋Š” ๋ฐฐํ–ฅ ๋ถ„๊ทน์ด ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์˜ ์ˆ˜๋ช…์— ์–ด๋–ค ์˜ํ–ฅ์„ ์ฃผ๋Š”์ง€ ๋ฐํ˜”๋‹ค. ์†Œ์ž์˜ ์—๋„ˆ์ง€ ์ „๋‹ฌ ๊ณผ์ •์— ์ฐธ์—ฌํ•˜์ง€ ์•Š๋Š” BAlq ๋ถ„์ž๋ฅผ ํ™œ์šฉํ•ด ์ „์ž ์ „๋‹ฌ์ธต๊ณผ ๋ฐœ๊ด‘์ธต (EML) ์‚ฌ์ด์— ์Œ์˜ ํ‘œ๋ฉด ์ „ํ•˜ ๋ฐ€๋„๋ฅผ ๋†’ํ˜”์„ ๋•Œ, ์†Œ์ž์˜ ๊ตฌ๋™ ์ˆ˜๋ช…์ด ์ฆ๊ฐ€ํ•จ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ๋ฌผ์งˆ์˜ ์—ดํ™” ์ •๋„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋Š” ์ „์•• ๋ณ€ํ™”๊ฐ€ ๋‚ฎ์•„์ง์„ ํ†ตํ•ด BAlq์— ์˜ํ•œ ํ‘œ๋ฉด์ „ํ•˜ ๋ณ€ํ™”๊ฐ€ ์ „์ž์ „๋‹ฌ์ธต์˜ ์•ˆ์ •์„ฑ์„ ์˜ฌ๋ฆผ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋ถ„๊ทน๋œ ์ธต์ด ๋ฐœ๊ด‘์ธต๊ณผ์˜ ๊ณ„๋ฉด์— ์œ„์น˜ํ•  ๊ฒฝ์šฐ์—์„œ๋งŒ ์ˆ˜๋ช…์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ •๊ณต ์ฐจ๋‹จ์ธต (hole blocking layer, HBL) ์ด ์Œ์˜ ํ‘œ๋ฉด ์ „ํ•˜๋ฅผ ๋ฐœ๊ด‘์ธต๊ณผ์˜ ๊ณ„๋ฉด์— ๊ฐ€์งˆ ๊ฒฝ์šฐ, ํ–ฅ์ƒ๋œ ์ˆ˜๋ช…์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒฐ๋ก ์„ ์–ป์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ถ„์ž์˜ ๋ฐฐํ–ฅ ๋ถ„๊ทน ํŠน์„ฑ๋„ ์†Œ์ž์˜ ์ˆ˜๋ช…ํ–ฅ์ƒ์„ ์œ„ํ•ด ๊ณ ๋ คํ•ด์•ผ ํ•จ์„ ๋ณด์˜€๋‹ค.Chapter 1. Introduction 2 1.1 Brief history of Organic Light-Emitting Diodes (OLEDs) 2 1.2 Efficiency of OLEDs 10 1.3 Light extraction methods for OLEDs 16 1.4 Finite difference time domain (FDTD) method 24 1.5 Operational stability of OLEDs 26 1.6 Outline of the thesis 28 Chapter 2. Random Organic Nano-textured Microstructures by Photo-Induced Crosslinking for Light Extraction of Blue OLEDs 31 2.1 Introduction 31 2.2 Experimental section 34 2.3 Results and Discussion 36 2.4 Conclusion 57 Chapter 3. Random Nanowire Arrays Spontaneously Formed via Vacuum Deposition for Enhancing Light Extraction from Inverted Top-Emitting Organic Light-Emitting Diodes 59 3.1 Introduction 59 3.2 Experimental section 62 3.3 Results and Discussion 65 3.4 Conclusion 77 Chapter 4. Via Hole Patterning of Light Extraction Layer for Electrical Connection 78 4.1 Introduction 78 4.2 Experimental section 80 4.3 Results and Discussion 83 4.4 Conclusion 92 Chapter 5. Improving Operation Lifetime of OLEDs using Spontaneous Orientation Polarization 93 5.1 Introduction 93 5.2 Experimental section 97 5.3 Results and Discussion 99 5.4 Conclusion 124 Chapter 6. Summary and Conclusion 125 Bibliography 128 ์ดˆ ๋ก 142 CURRICULUM VITAE 147 List of Publications 149 List of Presentations 151Docto

    Charge-carrier dynamics in organic LEDs

    Get PDF
    Anyone who decides to buy a new mobile phone today is likely to buy a screen made from organic light-emitting diodes (OLEDs). OLEDs are a relatively new display technology and will probably account for the largest market share in the upcoming years. This is due to their brilliant colors, high achievable display resolution, and comparably simple processing. Since they are not based on the rigid crystal structure of classical semiconductors and can be produced as planar thin-film modules, they also enable the fabrication of large-area lamps on flexible substrates โ€“ an attractive scenario for future lighting systems. Despite these promising properties, the breakthrough of OLED lighting technology is still pending and requires further research. The charge-carrier dynamics in an OLED determine its device functionality and, therefore, enable the understanding of fundamental physical concepts and phenomena. From the description of charge-carrier dynamics, this work derives experimental methods and device concepts to optimize the efficiency and stability of OLEDs. OLEDs feature an electric current of charge carriers (electrons and holes) that are intended to recombine under the emission of light. This process is preceded by charge-carrier injection and their transport to the emission layer. These three aspects are discussed together in this work. First, a method is presented that quantifies injection resistances using a simple experiment. It provides a valuable opportunity to better understand and optimize injection layers. Subsequently, the charge carrier transport at high electrical currents, as required for OLEDs as bright lighting elements, will be investigated. Here, electro-thermal effects are presented that form physical limits for the design and function of OLED modules and explain their sudden failure. Finally, the dynamics and recombination of electro-statically bound charge carrier pairs, so-called excitons, are examined. Various options are presented for manipulating exciton dynamics in such a way that the emission behavior of the OLED can be adjusted according to specific requirements.:List of publications . . . . . . . . . . . . . . . . . v List of abbreviations . . . . . . . . . . . . . . . . . ix 1 Introduction . . . . . . . . . . . . . . . . . 1 2 Fundamentals . . . . . . . . . . . . . . . . . 5 2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5 2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10 2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15 2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24 2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36 2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38 2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44 2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47 2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49 2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52 2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52 2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54 2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55 3 Materials and methods . . . . . . . . . . . . . . . . . 57 3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60 3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62 3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66 3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68 3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70 3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73 3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74 4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77 4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84 4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85 4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92 4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95 4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99 5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101 5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104 5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108 5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108 5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110 5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112 5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112 5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114 5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116 5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118 5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120 5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121 5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124 5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127 5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131 5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133 5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133 5.6.2 Bistability and tristability in organic semiconductors . . . . 134 5.6.3 Experimental indications for attempted branch hopping . . . 138 5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144 5.6.5 Taking another view onto the camera pictures . . . . . . . . 145 6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147 6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149 6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149 6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155 6.2 Dual-state Fรถrster transfer . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161 6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163 6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172 6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177 6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177 6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180 6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183 6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184 6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192 6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195 6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198 7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207 7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207 7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208 7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209 7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210 7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211 7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Bibliography. . . . . . . . . . . . . . . . . 215 Acknowledgements . . . . . . . . . . . . . . . . . 249Wer sich heute fรผr ein neues Mobiltelefon entscheidet, kauft damit wahrscheinlich einen Bildschirm aus organischen Leuchtdioden (OLEDs). Durch ihre brillanten Farben, die hohe erreichbare Auflรถsung und eine vergleichsweise einfache Prozessierung werden OLEDs als relativ neue Bildschirmtechnologie in den nรคchsten Jahren wohl den grรถรŸten Marktanteil ausmachen. Da sie nicht auf der starren Kristallstruktur klassischer Halbleiter beruhen und als planare Dรผnnschichtmodule produziert werden kรถnnen, ermรถglichen sie auรŸerdem die Fertigung groรŸer Flรคchenstrahler auf flexiblen Substraten โ€“ ein sehr attraktives Szenario fรผr zukรผnftige Beleuchtungssysteme. Trotz dieser vielversprechenden Eigenschaften steht der Durchbruch der OLED-Technologie als Leuchtmittel noch aus und erfordert weitere Forschung. Die Dynamik der Ladungstrรคger (Elektronen und Lรถcher) in einer OLED charakterisiert wichtige Teile der Bauteilfunktion und ermรถglicht daher das Verstรคndnis grundlegender physikalischer Konzepte und Phรคnomene. Diese Arbeit leitet anhand dieser Beschreibung experimentelle Methoden und Bauteilkonzepte ab, um die Effizienz und Stabilitรคt von OLEDs zu optimieren. OLEDs zeichnen sich dadurch aus, dass ein elektrischer Strom aus Ladungstrรคgern (Elektronen und Lรถchern) mรถglichst effizient unter Aussendung von Licht rekombiniert. Diesem Prozess geht eine Ladungstrรคgerinjektion und deren Transport zur Emissionsschicht voraus. Diese drei Aspekte werden in dieser Arbeit zusammenhรคngend diskutiert. Als erstes wird eine Methode vorgestellt, die Injektionswiderstรคnde anhand eines einfachen Experimentes quantifiziert. Sie bildet eine wertvolle Mรถglichkeit, Injektionsschichten besser zu verstehen und zu optimieren. AnschlieรŸend wird der Ladungstrรคgertransport bei hohen elektrischen Strรถmen untersucht, wie sie fรผr OLEDs als helle Beleuchtungselemente nรถtig sind. Hier werden elektro-thermische Effekte vorgestellt, die physikalische Grenzen fรผr das Design und die Funktion von OLED Modulen bilden und deren plรถtzliches Versagen erklรคren. AbschlieรŸend wird die Dynamik der stark elektrostatisch gebundenen Ladungstrรคgerpaare, sogenannter Exzitonen, kurz vor deren Rekombination untersucht. Es werden verschiedene Mรถglichkeiten vorgestellt sie so zu manipulieren, dass sich das Abstrahlverhalten der OLED anhand bestimmter Anforderungen einstellen lรคsst.:List of publications . . . . . . . . . . . . . . . . . v List of abbreviations . . . . . . . . . . . . . . . . . ix 1 Introduction . . . . . . . . . . . . . . . . . 1 2 Fundamentals . . . . . . . . . . . . . . . . . 5 2.1 Light sources and the human society . . . . . . . . . . . . . . . . . 5 2.1.1 Human light perception . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Physical light quantification . . . . . . . . . . . . . . . . . . 10 2.1.3 Non-visual light impact . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Implications for modern light sources . . . . . . . . . . . . . 15 2.2 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Molecular energy states . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Intramolecular state transitions . . . . . . . . . . . . . . . . 24 2.2.3 Molecular films . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Electrical doping . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5 Charge-carrier transport . . . . . . . . . . . . . . . . . . . . 36 2.2.6 Exciton formation and recombination . . . . . . . . . . . . . 38 2.2.7 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Organic light-emitting diodes . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Structure and operation principle . . . . . . . . . . . . . . . 44 2.3.2 Metal-semiconductor interfaces . . . . . . . . . . . . . . . . 47 2.3.3 Typical operation characteristics . . . . . . . . . . . . . . . . 49 2.4 Colloidal nanocrystal emitters . . . . . . . . . . . . . . . . . . . . . 52 2.4.1 Terminology: Nanocrystals and quantum dots . . . . . . . . 52 2.4.2 The particle-in-a-box model . . . . . . . . . . . . . . . . . . 54 2.4.3 Surface passivation . . . . . . . . . . . . . . . . . . . . . . . 55 3 Materials and methods . . . . . . . . . . . . . . . . . 57 3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 OLED materials . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.2 Materials for photoluminescence . . . . . . . . . . . . . . . . 60 3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Thermal evaporation . . . . . . . . . . . . . . . . . . . . . . 62 3.2.2 Solution processing . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Absorbance spectroscopy . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Photoluminescence quantum yield . . . . . . . . . . . . . . . 66 3.3.3 Excitation sources . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.4 Sensitive EQE for absorber materials . . . . . . . . . . . . . 68 3.4 Exciton-lifetime analysis . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.1 Triplet lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Singlet-state lifetime . . . . . . . . . . . . . . . . . . . . . . 70 3.4.3 Lifetime extraction . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 OLED characterization . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.1 Current-voltage-luminance and quantum efficiency . . . . . . 73 3.5.2 Temperature-controlled evaluation . . . . . . . . . . . . . . . 74 4 Charge-carrier injection into doped organic films . . . . . . . . . . . . . . . . . 77 4.1 Ohmic injection contacts . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Device symmetry . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 Device homogeneity . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 Resistance characteristics . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . 84 4.3.2 Equivalent-circuit development . . . . . . . . . . . . . . . . 85 4.4 Impedance spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Measurement fundamentals . . . . . . . . . . . . . . . . . . 92 4.4.2 Thickness dependence . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Temperature dependence . . . . . . . . . . . . . . . . . . . . 95 4.5 Depletion zone variation . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Molybdenum oxide as a case study . . . . . . . . . . . . . . . . . . 99 5 Charge-carrier transport and self-heating in OLED lighting . . . . . . . . . . . . . . . . .101 5.1 Joule self-heating in OLEDs . . . . . . . . . . . . . . . . . . . . . . 104 5.1.1 Electrothermal feedback . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1.3 Cooling strategies . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Self-heating causes lateral luminance inhomogeneities in OLEDs . . 108 5.2.1 The influence of transparent electrodes . . . . . . . . . . . . 108 5.2.2 Luminance inhomogeneities in large OLED panels . . . . . . 110 5.3 Electrothermal OLED models . . . . . . . . . . . . . . . . . . . . . 112 5.3.1 Perceiving an OLED as thermistor array . . . . . . . . . . . 112 5.3.2 The OLED as a single three-layer thermistor . . . . . . . . . 114 5.3.3 A numerical 3D model of heat and current flow . . . . . . . 116 5.4 OLED stack and experimental conception . . . . . . . . . . . . . . 118 5.5 The Switch-back effect in planar light sources . . . . . . . . . . . . 120 5.5.1 Predictions from numerical 3D modeling . . . . . . . . . . . 121 5.5.2 Experimental proof . . . . . . . . . . . . . . . . . . . . . . . 124 5.5.3 Variation of vertical heat flux . . . . . . . . . . . . . . . . . 127 5.5.4 Variation of the OLED area . . . . . . . . . . . . . . . . . . 131 5.6 Electrothermal tristabilities in OLEDs . . . . . . . . . . . . . . . . 133 5.6.1 Observing different burn-in schematics . . . . . . . . . . . . 133 5.6.2 Bistability and tristability in organic semiconductors . . . . 134 5.6.3 Experimental indications for attempted branch hopping . . . 138 5.6.4 Saving bright OLEDs from burning in . . . . . . . . . . . . 144 5.6.5 Taking another view onto the camera pictures . . . . . . . . 145 6 Charge-carrier recombination and exciton management . . . . . . . . . . . . . . . . .147 6.1 Optical down conversion . . . . . . . . . . . . . . . . . . . . . . . . 149 6.1.1 Spectral reshaping of visible OLEDs . . . . . . . . . . . . . 149 6.1.2 Infrared-emitting OLEDs . . . . . . . . . . . . . . . . . . . . 155 6.2 Dual-state Fรถrster transfer . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3 Singlet fission and triplet fusion in rubrene . . . . . . . . . . . . . . 161 6.3.1 Photoluminescence of pure and doped rubrene films . . . . . 163 6.3.2 Electroluminescence transients of rubrene OLEDs . . . . . . 172 6.4 Charge transfer-state tuning by electric fields . . . . . . . . . . . . . 177 6.4.1 CT-state tuning via doping variation . . . . . . . . . . . . . 177 6.4.2 CT-state tuning via voltage . . . . . . . . . . . . . . . . . . 180 6.5 Excursus: Exciton-spin mixing for wavelength identification . . . . 183 6.5.1 Characteristics of the active film . . . . . . . . . . . . . . . . 184 6.5.2 Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.5.5 Application demonstrations . . . . . . . . . . . . . . . . . . 192 6.5.6 All-organic device . . . . . . . . . . . . . . . . . . . . . . . . 195 6.5.7 Device limitations and prospects . . . . . . . . . . . . . . . . 198 7 Conclusion and outlook . . . . . . . . . . . . . . . . . 207 7.1 Charge-carrier injection into doped films . . . . . . . . . . . . . . . 207 7.2 Charge-carrier transport in hot OLEDs . . . . . . . . . . . . . . . . 208 7.2.1 Prospects for OLED lighting facing tristable behavior . . . . 209 7.2.2 Outlook: Accessing the hidden PDR 2 region . . . . . . . . . 210 7.3 Charge-carrier recombination and spin mixing . . . . . . . . . . . . 211 7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.3.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Bibliography. . . . . . . . . . . . . . . . . 215 Acknowledgements . . . . . . . . . . . . . . . . . 24

    Eurodisplay 2019

    Get PDF
    The collection includes abstracts of reports selected by the program by the conference committee

    Robust deep learning for computational imaging through random optics

    Full text link
    Light scattering is a pervasive phenomenon that poses outstanding challenges in both coherent and incoherent imaging systems. The output of a coherent light scattered from a complex medium exhibits a seemingly random speckle pattern that scrambles the useful information of the object. To date, there is no simple solution for inverting such complex scattering. Advancing the solution of inverse scattering problems could provide important insights into applications across many areas, such as deep tissue imaging, non-line-of-sight imaging, and imaging in degraded environment. On the other hand, in incoherent systems, the randomness of scattering medium could be exploited to build lightweight, compact, and low-cost lensless imaging systems that are applicable in miniaturized biomedical and scientific imaging. The imaging capabilities of such computational imaging systems, however, are largely limited by the ill-posed or ill-conditioned inverse problems, which typically causes imaging artifacts and degradation of the image resolution. Therefore, mitigating this issue by developing modern algorithms is essential for pushing the limits of such lensless computational imaging systems. In this thesis, I focus on the problem of imaging through random optics and present two novel deep-learning (DL) based methodologies to overcome the challenges in coherent and incoherent systems: 1) no simple solution for inverse scattering problem and lack of robustness to scattering variations; and 2) ill-posed problem for diffuser-based lensless imaging. In the first part, I demonstrate the novel use of a deep neural network (DNN) to solve the inverse scattering problem in a coherent imaging system. I propose a `one-to-all' deep learning technique that encapsulates a wide range of statistical variations for the model to be resilient to speckle decorrelations. I show for the first time, to the best of my knowledge, that the trained CNN is able to generalize and make high-quality object prediction through an entirely different set of diffusers of the same macroscopic parameter. I then push the limit of robustness against a broader class of perturbations including scatterer change, displacements, and system defocus up to 10X depth of field. In the second part, I consider the utility of the random light scattering to build a diffuser-based computational lensless imaging system and present a generally applicable novel DL framework to achieve fast and noise-robust color image reconstruction. I developed a diffuser-based computational funduscope that reconstructs important clinical features of a model eye. Experimentally, I demonstrated fundus image reconstruction over a large field of view (FOV) and robustness to refractive error using a constant point-spread-function. Next, I present a physics simulator-trained, adaptive DL framework to achieve fast and noise-robust color imaging. The physics simulator incorporates optical system modeling, the simulation of mixed Poisson-Gaussian noise, and color filter array induced artifacts in color sensors. The learning framework includes an adaptive multi-channel L2-regularized inversion module and a channel-attention enhancement network module. Both simulation and experiments show consistently better reconstruction accuracy and robustness to various noise levels under different light conditions compared with traditional L2-regularized reconstructions. Overall, this thesis investigated two major classes of problems in imaging through random optics. In the first part of the thesis, my work explored a novel DL-based approach for solving the inverse scattering problem and paves the way to a scalable and robust deep learning approach to imaging through scattering media. In the second part of the thesis, my work developed a broadly applicable adaptive learning-based framework for ill-conditioned image reconstruction and a physics-based simulation model for computational color imaging

    Encoding high dynamic range and wide color gamut imagery

    Get PDF
    In dieser Dissertation wird ein szenischer Bewegtbilddatensatz mit erweitertem Dynamikumfang (High Dynamic Range, HDR) und groรŸem Farbumfang (Wide Color Gamut, WCG) eingefรผhrt und es werden Modelle zur Kodierung von HDR und WCG Bildern vorgestellt. Die objektive und visuelle Evaluation neuer HDR und WCG Bildverarbeitungsalgorithmen, Kompressionsverfahren und Bildwiedergabegerรคte erfordert einen Referenzdatensatz hoher Qualitรคt. Daher wird ein neuer HDR- und WCG-Video-Datensatz mit einem Dynamikumfang von bis zu 18 fotografischen Blenden eingefรผhrt. Er enthรคlt inszenierte und dokumentarische Szenen. Die einzelnen Szenen sind konzipiert um eine Herausforderung fรผr Tone Mapping Operatoren, Gamut Mapping Algorithmen, Kompressionscodecs und HDR und WCG Bildanzeigegerรคte darzustellen. Die Szenen sind mit professionellem Licht, Maske und Filmausstattung aufgenommen. Um einen cinematischen Bildeindruck zu erhalten, werden digitale Filmkameras mit โ€˜Super-35 mmโ€™ SensorgrรถรŸe verwendet. Der zusรคtzliche Informationsgehalt von HDR- und WCG-Videosignalen erfordert im Vergleich zu Signalen mit herkรถmmlichem Dynamikumfang eine neue und effizientere Signalkodierung. Ein Farbraum fรผr HDR und WCG Video sollte nicht nur effizient quantisieren, sondern wegen der unterschiedlichen Monitoreigenschaften auf der Empfรคngerseite auch fรผr die Dynamik- und Farbumfangsanpassung geeignet sein. Bisher wurden Methoden fรผr die Quantisierung von HDR Luminanzsignalen vorgeschlagen. Es fehlt jedoch noch ein entsprechendes Modell fรผr Farbdifferenzsignale. Es werden daher zwei neue Farbrรคume eingefรผhrt, die sich sowohl fรผr die effiziente Kodierung von HDR und WCG Signalen als auch fรผr die Dynamik- und Farbumfangsanpassung eignen. Diese Farbrรคume werden mit existierenden HDR und WCG Farbsignalkodierungen des aktuellen Stands der Technik verglichen. Die vorgestellten Kodierungsschemata erlauben es, HDR- und WCG-Video mittels drei Farbkanรคlen mit 12 Bits tonaler Auflรถsung zu quantisieren, ohne dass Quantisierungsartefakte sichtbar werden. Wรคhrend die Speicherung und รœbertragung von HDR und WCG Video mit 12-Bit Farbtiefe pro Kanal angestrebt wird, unterstรผtzen aktuell verbreitete Dateiformate, Videoschnittstellen und Kompressionscodecs oft nur niedrigere Bittiefen. Um diese existierende Infrastruktur fรผr die HDR Videoรผbertragung und -speicherung nutzen zu kรถnnen, wird ein neues bildinhaltsabhรคngiges Quantisierungsschema eingefรผhrt. Diese Quantisierungsmethode nutzt Bildeigenschaften wie Rauschen und Textur um die benรถtigte tonale Auflรถsung fรผr die visuell verlustlose Quantisierung zu schรคtzen. Die vorgestellte Methode erlaubt es HDR Video mit einer Bittiefe von 10 Bits ohne sichtbare Unterschiede zum Original zu quantisieren und kommt mit weniger Rechenkraft im Vergleich zu aktuellen HDR Bilddifferenzmetriken aus

    A Physics of Failure Based Qualification Process for Flexible Display Interconnect Materials

    Get PDF
    The next paradigm shift in display technology involves making them flexible, bringing with it many challenges with respect to product reliability. To compound the problem, industry is continuously introducing novel materials and experimenting with device geometries to improve flexibility and optical performance. Hence, a method to rapidly qualify these new designs for high reliability applications is imperative. This dissertation involves the development of a qualification process for gate line interconnects used in flexible displays. The process starts with the observed failure mode of permanent horizontal lines in the displays, followed by the identification of the underlying failure mechanism. Finite element analyses are developed to determine the relationship between the physical flexing and the mechanical stress imposed on the traces. The design of an accelerated life test is performed based on the known agent of failure being cyclic bending that induces a tensile strain. A versatile dedicated test system is designed and integrated in order to rapidly capture changes in resistance of multiple traces during test. Dedicated test structures are also designed and fabricated to facilitate in-situ electrical measurements and direct observations. Since the test structures were consumed during the integration of the test system, random failure times are used in the process of determining a life-stress model. Different models are compared with respect to their applicability to the underlying failure mechanism as well as parameter estimation techniques. This methodology may be applied towards the rapid qualification of other novel materials, process conditions, and device geometries prior to their widespread use in future display systems

    Bio- und Umweltsensorik basierend auf organischer Optoelektronik

    Get PDF
    The integration of organic light emitting diodes (OLEDs) and organic photodetectors (OPDs) promises compact and low-cost hybrid integrated sensors for optical detection. The thermal evaporation-based device fabrication technique allows for all optical sensing elements being permanently aligned with a high degree of miniaturization, creating more portable, energy-efficient and multiplexing-capable devices; these may be easily combined with microfluidic units resulting in a minimal sample and reagent volume demand of the sensor. This dissertation deals in particular with the system design, development, characterization and deployment of a monolithic integrated sensor unit with 8 OLED and 8 OPD pixel pairs for different applications. The following work provides an extensive study of the system efficiency via ray tracing simulations, investigating crucial boundary conditions for efficient analyte detection. The proposed sensing unit contains OLED and OPD devices with an individual pixel size of 0.5mm ร— 0.5mm fabricated on a 12.5mm ร— 12.5mm glass substrate. The developed sensor system was successfully characterized and applied in a biosensing application by detecting fluorescence labelled single-stranded DNA (ssDNA) after forming the Fรถrster resonance energy transfer (FRET) upon the hybridization of two ssDNA strands. This optoelectronic sensor has the potential to enable compact and low-cost fluorescence point-of-care (POC) devices for decentralised multiplex biomedical testing. Additionally, this sensing platform was deployed in environmental and agricultural applications to detect nutrients such as nitrite and nitrate. In this colorimetric application the popular Griess reaction was utilized to form the nitrite concentration dependent amount of azo dye, which absorbs light around 540nm
    • โ€ฆ
    corecore