104 research outputs found

    Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges

    Full text link
    The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation mobile networks. In less than ten years, in-band FD has advanced from being demonstrated in research labs to being implemented in standards and products, presenting new opportunities to utilize its foundational concepts. Some of the most significant opportunities include using FD to enable wireless networks to sense the physical environment, integrate sensing and communication applications, develop integrated access and backhaul solutions, and work with smart signal propagation environments powered by reconfigurable intelligent surfaces. However, these new opportunities also come with new challenges for large-scale commercial deployment of FD technology, such as managing self-interference, combating cross-link interference in multi-cell networks, and coexistence of dynamic time division duplex, subband FD and FD networks.Comment: 21 pages, 15 figures, accepted to an IEEE Journa

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Performance Analysis in Full-Duplex Relaying Systems withWireless Power Transfer

    Get PDF
    Energy harvesting (EH) technology has become increasingly attractive as an appealing solution to provide long-lasting power for energy-constrained wireless cooperative sensor networks. EH in such networks is particularly important as it can enable information relaying. Different from absorbing energy from intermittent and unpredictable nature, such as solar, wind, and vibration, harvesting from radio frequency (RF) radiated by ambient transmitters has received tremendous attention. The RF signal can convey both information and energy at the same time, which facilitates the development of simultaneous wireless information and power transfer. Besides, ambient RF is widely available from the base station, WIFI, and mobile phone in the current information era. However, some open issues associated with EH are existing in the state-of-art. One of the key challenges is rapid energy loss during the transferring process, especially for long-distance transmission. The other challenge is the design of protocols to optimally coordinate between information and power transmission. Meanwhile, in-band full-duplex (IBFD) communication have gained considerable attraction by researchers, which has the ability to improve system spectral efficiency. IBFD can receive information and forward information at the same time on the same frequency. Since the RF signal can be superimposed, the antenna of the IBFD system receives the RF signal from both desired transmitter and local transmitter. Due to the short distance of the local transmission signals, the received signal power is much larger than the desired transmission signals, which results in faulty receiving of the desired signals. Therefore, it is of great significance to study the local self-interference cancellation method of the IBFD system. In the recent state-of-art, three main types of self-interference cancellations are researched, which are passive cancellations, digital cancellations, and analog cancellations. In this thesis, we study polarization-enabled digital self-interference cancellation (PDC) scheme in IBFD EH systems which cancels self-interference by antenna polarization (propagation domain) and digital processing (digital domain). The theme of this thesis is to address the following two questions: how the selfinterference would be canceled in the IBFD EH system and how to optimize key performances of the system to optimal system performances. This thesis makes five research contributions in the important area of IBFD relaying systems with wireless power transfer. Their applications are primarily in the domains of the Internet of Things (IoT) and 5G-and-beyond wireless networks. The overarching objective of the thesis is to construct analytical system models and evaluate system performance (outage probability, throughput, error) in various scenarios. In all five contributions, system models and analytical expressions of the performance metrics are derived, followed by computer simulations for performance analysis

    Energy efficiency and interference management in long term evolution-advanced networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Cellular networks are continuously undergoing fast extraordinary evolution to overcome technological challenges. The fourth generation (4G) or Long Term Evolution-Advanced (LTE-Advanced) networks offer improvements in performance through increase in network density, while allowing self-organisation and self-healing. The LTE-Advanced architecture is heterogeneous, consisting of different radio access technologies (RATs), such as macrocell, smallcells, cooperative relay nodes (RNs), having various capabilities, and coexisting in the same geographical coverage area. These network improvements come with different challenges that affect users’ quality of service (QoS) and network performance. These challenges include; interference management, high energy consumption and poor coverage of marginal users. Hence, developing mitigation schemes for these identified challenges is the focus of this thesis. The exponential growth of mobile broadband data usage and poor networks’ performance along the cell edges, result in a large increase of the energy consumption for both base stations (BSs) and users. This due to improper RN placement or deployment that creates severe inter-cell and intracell interferences in the networks. It is therefore, necessary to investigate appropriate RN placement techniques which offer efficient coverage extension while reducing energy consumption and mitigating interference in LTE-Advanced femtocell networks. This work proposes energy efficient and optimal RN placement (EEORNP) algorithm based on greedy algorithm to assure improved and effective coverage extension. The performance of the proposed algorithm is investigated in terms of coverage percentage and number of RN needed to cover marginalised users and found to outperform other RN placement schemes. Transceiver design has gained importance as one of the effective tools of interference management. Centralised transceiver design techniques have been used to improve network performance for LTE-Advanced networks in terms of mean square error (MSE), bit error rate (BER) and sum-rate. The centralised transceiver design techniques are not effective and computationally feasible for distributed cooperative heterogeneous networks, the systems considered in this thesis. This work proposes decentralised transceivers design based on the least-square (LS) and minimum MSE (MMSE) pilot-aided channel estimations for interference management in uplink LTE-Advanced femtocell networks. The decentralised transceiver algorithms are designed for the femtocells, the macrocell user equipments (MUEs), RNs and the cell edge macrocell UEs (CUEs) in the half-duplex cooperative relaying systems. The BER performances of the proposed algorithms with the effect of channel estimation are investigated. Finally, the EE optimisation is investigated in half-duplex multi-user multiple-input multiple-output (MU-MIMO) relay systems. The EE optimisation is divided into sub-optimal EE problems due to the distributed architecture of the MU-MIMO relay systems. The decentralised approach is employed to design the transceivers such as MUEs, CUEs, RN and femtocells for the different sub-optimal EE problems. The EE objective functions are formulated as convex optimisation problems subject to the QoS and transmit powers constraints in case of perfect channel state information (CSI). The non-convexity of the formulated EE optimisation problems is surmounted by introducing the EE parameter substractive function into each proposed algorithms. These EE parameters are updated using the Dinkelbach’s algorithm. The EE optimisation of the proposed algorithms is achieved after finding the optimal transceivers where the unknown interference terms in the transmit signals are designed with the zero-forcing (ZF) assumption and estimation errors are added to improve the EE performances. With the aid of simulation results, the performance of the proposed decentralised schemes are derived in terms of average EE evaluation and found to be better than existing algorithms

    Physical Layer Security of Cooperative NOMA for IoT Networks under I/Q Imbalance

    Get PDF
    In this paper, we investigate the reliability and security of cooperative dual-hop non-orthogonal multiple access (NOMA) for internet-of-thing (IoT) networks, in which the transceivers consider a detrimental factor of in-phase and quadrature-phase imbalance (IQI). The communication between the source and destination is accomplished through a decode-and-forward (DF) relay in the presence of an eavesdropper. In order to characterize the performance of the considered system, exact analytical expressions for the outage probability (OP) and intercept probability (IP) are derived in closed-form. Furthermore, to better understanding the performance of the considered system, we further derive the asymptotic expressions of OP in the high signal-to-noise ratio (SNR) regime and IP at the high main eavesdropping ratio (MER) region. A large number of analysis and Monte Carlo simulation results show that the existence of IQI usually increases the corresponding OP and reduces the IP, which means that reduces the reliability of the system and improves the security. In addition, the provided results provide useful insights into the trade-off between reliability and security of secure cooperative communication systems

    Étude du relais full-duplex dans les environnements intérieurs

    Get PDF
    Élargir la couverture des services du réseau aux endroits difficiles et aux régions éloignées est un besoin de plus en plus nécessaire de nos vies quotidiennes actuelles et futures. L'augmentation de la population et la demande accrue de services et de solutions de communication requièrent l'augmentation de la capacité des moyens de communication tout en permettant une couverture plus efficiente et plus étendue des territoires et régions faiblement peuplées dans le Canada et dans monde. Des études récentes ont confirmé que des interférences comme les interférences dans le même canal (ICC) et les interférences mutuelles (SI) ont un impact énorme sur les systèmes de communication sans fil et peuvent entraîner une dégradation significative des performances. Les techniques de relayage, dans lesquelles une source émettrice communique avec un récepteur destinataire l'aide d'un noeud intermédiaire, ont été introduites comme des solutions pour répondre au besoin croissant de débits plus élevés et de couverture étendu pour les communications sans fil. En tant que tel, il est essentiel de concevoir des systèmes de relais capables non seulement d'offrir une grande efficacité spectrale du signal radio, mais aussi de bénéficier pleinement des facilités de la diversité antennaire. Pour répondre à cet objectif, ce mémoire présente une étude sur une technique originale de réduction et d'annulation des interférences induite par un relayage quasi instantané sur un même signal radio en utilisant les antennes multiples du relais. Transmettre et recevoir simultanément le même signal radio au niveau du relais, créent une auto-interférence en raison des signaux de bouclage. Le défi principal de la mise en oeuvre du relais est d'atténuer et d'annuler la destruction ou la perte de l'information relayée. L'originalité de du travail réside dans la proposition d'un algorithme efficace utilisant une double projection 1 'une à 1' entrée du relais et une autre à la sortie du relais. Les résultats obtenus démontrent une réduction significative des interférences comparativement à d'autres travaux
    corecore