1,059 research outputs found

    Internal combustion engine sensor network analysis using graph modeling

    Get PDF
    In recent years there has been a rapid development in technologies for smart monitoring applied to many different areas (e.g. building automation, photovoltaic systems, etc.). An intelligent monitoring system employs multiple sensors distributed within a network to extract useful information for decision-making. The management and the analysis of the raw data derived from the sensor network includes a number of specific challenges still unresolved, related to the different communication standards, the heterogeneous structure and the huge volume of data. In this paper we propose to apply a method based on complex network theory, to evaluate the performance of an Internal Combustion Engine. Data are gathered from the OBD sensor subset and from the emission analyzer. The method provides for the graph modeling of the sensor network, where the nodes are represented by the sensors and the edge are evaluated with non-linear statistical correlation functions applied to the time series pairs. The resulting functional graph is then analyzed with the topological metrics of the network, to define characteristic proprieties representing useful indicator for the maintenance and diagnosis

    Flexible and robust control of heavy duty diesel engine airpath using data driven disturbance observers and GPR models

    Get PDF
    Diesel engine airpath control is crucial for modern engine development due to increasingly stringent emission regulations. This thesis aims to develop and validate a exible and robust control approach to this problem for speci cally heavy-duty engines. It focuses on estimation and control algorithms that are implementable to the current and next generation commercial electronic control units (ECU). To this end, targeting the control units in service, a data driven disturbance observer (DOB) is developed and applied for mass air ow (MAF) and manifold absolute pressure (MAP) tracking control via exhaust gas recirculation (EGR) valve and variable geometry turbine (VGT) vane. Its performance bene ts are demonstrated on the physical engine model for concept evaluation. The proposed DOB integrated with a discrete-time sliding mode controller is applied to the serial level engine control unit. Real engine performance is validated with the legal emission test cycle (WHTC - World Harmonized Transient Cycle) for heavy-duty engines and comparison with a commercially available controller is performed, and far better tracking results are obtained. Further studies are conducted in order to utilize capabilities of the next generation control units. Gaussian process regression (GPR) models are popular in automotive industry especially for emissions modeling but have not found widespread applications in airpath control yet. This thesis presents a GPR modeling of diesel engine airpath components as well as controller designs and their applications based on the developed models. Proposed GPR based feedforward and feedback controllers are validated with available physical engine models and the results have been very promisin

    Observer Based Cylinder Charge Estimation for Spark-ignition Engines

    Get PDF
    Internal combustion engines require accurate cylinder charge estimation for determining engine torque, controlling air-to-fuel ratio (AFR), and ensuring high after-treatment efficiency. This is challenging due to the highly transient operating conditions that are common in automobile engines. The problem is further complicated by spark ignition (SI) engine technologies such as variable valve timing (VVT) and exhaust gas recirculation (EGR) which are applied to improve fuel economy and reduce pollutant emissions. With manifold filling/emptying/mixing phenomenon and different actuator response times, these technologies significantly increase the complexity of cylinder charge estimation. Current cylinder charge estimation methodologies require a combination of sensors and empirical models to deal with the high degrees of control freedom existent on the engine. But these methods have the drawbacks of great dependency on accurate calibration and poor transient performance. Most importantly, the current methods isolate feed-forward cylinder charge estimation and feedback AFR control. When there is discrepancy between target lambda value and sensed lambda value at exhaust side, the current control/estimation method will trim the fuel injection amount no matter where the error source is. As a matter of fact, the error might come from the throttle flow estimation, the fuel injection flow estimation, EGR flow estimation, or any combination of these error sources. Increased air-path complexity and drawbacks of traditional methods drive the need for cost effective solutions that produce high air/EGR/fuel charge estimation accuracy with the ability to identify the error source while minimizing sensor cost, computational effort, and calibration time. This research first evaluates the existing work on air charge estimation for SI engines with massive experimental tests covering various operating conditions, which are designed for the algorithm verification of this research. Then several estimation methods which utilize both Manifold Absolute Pressure (MAP) and Mass Air Flow (MAF) sensors are studied and analyzed. Reduction of calibration effort and improvement of accuracy are observed from the proposed cylinder air charge estimation methods. Following that, a model is built to study the engine gas path dynamics and characteristics and then simplified to provide system dynamic basis for the following estimation algorithm development. Using the developed model, a disturbance observer based cylinder charge estimation technique is developed based on a combination of sensors including MAF, MAP, and exhaust lambda sensors. This developed algorithm significantly improves engine states estimation accuracy compared to conventional Single-Input-Single-Output (SISO) methods. Also, the augmentation of disturbance observation is able to pin point the source of the estimation error. Through experimental validation, using the developed estimation method with proper parameters, the error source of estimation can be identified and rectified when disturbance is introduced to throttle flow model, EGR flow model, fuel injection flow model or any combination of these models. The structure of the proposed algorithm should adapt to most SI engine configurations. It can help the engine controller to mitigate modeling errors thus improve the performance of physics model based engine control especially AFR control

    Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    Get PDF

    Model Predictive Control of Modern High-Degree-of-Freedom Turbocharged Spark Ignited Engines with External Cooled EGR

    Get PDF
    The efficiency of modern downsized SI engines has been significantly improved using cooled Low-Pressure Exhaust Gas Recirculation, Turbocharging and Variable Valve Timing actuation. Control of these sub-systems is challenging due to their inter-dependence and the increased number of actuators associated with engine control. Much research has been done on developing algorithms which improve the transient turbocharged engine response without affecting fuel-economy. With the addition of newer technologies like external cooled EGR the control complexity has increased exponentially. This research proposes a methodology to evaluate the ability of a Model Predictive Controller to coordinate engine and air-path actuators simultaneously. A semi-physical engine model has been developed and analyzed for non-linearity. The computational burden of implementing this control law has been addressed by utilizing a semi-physical engine system model and basic analytical differentiation. The resulting linearization process requires less than 10% of the time required for widely used numerical linearization approach. Based on this approach a Nonlinear MPC-Quadratic Program has been formulated and solved with preliminary validation applied to a 1D Engine model followed by implementation on an experimental rapid prototyping control system. The MPC based control demonstrates the ability to co-ordinate different engine and air-path actuators simultaneously for torque-tracking with minimal constraint violation. Avenues for further improvement have been identified and discussed

    EXPERIMENTAL SETUP AND CONTROLLER DESIGN FOR AN HCCI ENGINE

    Get PDF
    Homogeneous charged compression ignition (HCCI) is a promising combustion mode for internal combustion (IC) engines. HCCI engines have very low NOx and soot emission and low fuel consumption compared to traditional engines. The aim of this thesis is divided into two main parts: (1) engine instrumentation with a step towards converting a gasoline turbocharged direct injection (GTDI) engine to an HCCI engine; and (2) developing controller for adjusting the crank angle at 50% mass fuel burn (CA50), exhaust gas temperature Texh, and indicated mean effective pressure (IMEP) of a single cylinder Ricardo HCCI engine. The base GTDI engine is modified by adding an air heater, inter-cooler, and exhaust gas recirculation (EGR) in the intake and exhaust loops. dSPACE control units are programmed for adding monitoring sensors and implementing actuators in the engine. Control logics for actuating electronic throttle control (ETC) valve, EGR valve, and port fuel injector (PFI) are developed using the rapid control prototyping (RCP) feature of dSPACE. A control logic for crank/cam synchronization to determine engine crank angle with respect to firing top dead center (TDC) is implemented and validated using in-cylinder pressure sensor data. A control oriented model (COM) is developed for estimating engine parameters including CA50, Texh, and IMEP for a single cylinder Ricardo engine. The COM is validated using experimental data for steady state and transient engine operating conditions. A novel three-input three-output controller is developed and tested on a detailed physical HCCI engine plant model. Two type of controller design approaches are used for designing HCCI controllers: (1) empirical, and (2) model-based. A discrete sub-optimal sliding mode controller (DSSMC) is designed as a model-based controller to control CA50 and Texh, and a PI controller is designed to control IMEP. The results show that the designed controllers can successfully track the reference trajectories and can reject the external disturbances within the given operating region

    Automotive Powertrain Control — A Survey

    Full text link
    This paper surveys recent and historical publications on automotive powertrain control. Control-oriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72023/1/j.1934-6093.2006.tb00275.x.pd
    • …
    corecore