2,074 research outputs found

    Adaptive particle swarm optimization

    Get PDF
    An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity

    Improved dynamical particle swarm optimization method for structural dynamics

    Get PDF
    A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm, avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using DI-PSO is more efficient as compared with those designs obtained using single optimization.Peer ReviewedPostprint (published version

    Adaptive Critics for Dynamic Particle Swarm Optimization

    Get PDF
    This work introduces a novel technique for dynamic particle swarm optimization (DPSO) using adaptive critic designs. The adaptation between global and local search in an optimization algorithm is critical for optimization problems especially in a dynamically changing environment or process over time. The inertia weight in particle swarm optimization (PSO) is dynamically adjusted in this paper in order to provide a nonlinear search capability for the PSO algorithm. Results on benchmark functions in the literature are provided

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Optimized Placement of Wind Turbines in Large-Scale Offshore Wind Farm using Particle Swarm Optimization Algorithm

    Get PDF

    Improving the Diversity of PSO for an Engineering Inverse Problem using Adaptive Inertia Weight

    Get PDF
    Particle swarm optimization is a stochastic optimal search algorithm inspired by observing schools of fishes and flocks of birds. It is prevalent due to its easy implementation and fast convergence. However, PSO has been known to succumb to local optima when dealing with complex and higher dimensional optimization problems. To handle the problem of premutature convergence in PSO, this paper presents a novel adaptive inertia weight strategy and modifies the velocity update equation with the new Sbest term. To maintain the diversity of the population a particular radius r is introduced to impulse cluster particles. To validate the effectiveness of the proposed algorithm, various test functions and typical engineering applications are employed, and the experimental results show that with the changing of the proposed parameter the performance of PSO improves when dealing with these complex and high dimensional problems
    corecore