494 research outputs found

    Bayesian Nonparametric Unmixing of Hyperspectral Images

    Full text link
    Hyperspectral imaging is an important tool in remote sensing, allowing for accurate analysis of vast areas. Due to a low spatial resolution, a pixel of a hyperspectral image rarely represents a single material, but rather a mixture of different spectra. HSU aims at estimating the pure spectra present in the scene of interest, referred to as endmembers, and their fractions in each pixel, referred to as abundances. Today, many HSU algorithms have been proposed, based either on a geometrical or statistical model. While most methods assume that the number of endmembers present in the scene is known, there is only little work about estimating this number from the observed data. In this work, we propose a Bayesian nonparametric framework that jointly estimates the number of endmembers, the endmembers itself, and their abundances, by making use of the Indian Buffet Process as a prior for the endmembers. Simulation results and experiments on real data demonstrate the effectiveness of the proposed algorithm, yielding results comparable with state-of-the-art methods while being able to reliably infer the number of endmembers. In scenarios with strong noise, where other algorithms provide only poor results, the proposed approach tends to overestimate the number of endmembers slightly. The additional endmembers, however, often simply represent noisy replicas of present endmembers and could easily be merged in a post-processing step

    Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery

    Get PDF
    This paper proposes a hierarchical Bayesian model that can be used for semi-supervised hyperspectral image unmixing. The model assumes that the pixel reflectances result from linear combinations of pure component spectra contaminated by an additive Gaussian noise. The abundance parameters appearing in this model satisfy positivity and additivity constraints. These constraints are naturally expressed in a Bayesian context by using appropriate abundance prior distributions. The posterior distributions of the unknown model parameters are then derived. A Gibbs sampler allows one to draw samples distributed according to the posteriors of interest and to estimate the unknown abundances. An extension of the algorithm is finally studied for mixtures with unknown numbers of spectral components belonging to a know library. The performance of the different unmixing strategies is evaluated via simulations conducted on synthetic and real data

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Bayesian nonlinear hyperspectral unmixing with spatial residual component analysis

    Get PDF
    This paper presents a new Bayesian model and algorithm for nonlinear unmixing of hyperspectral images. The model proposed represents the pixel reflectances as linear combinations of the endmembers, corrupted by nonlinear (with respect to the endmembers) terms and additive Gaussian noise. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters and their constraints. In particular, a gamma Markov random field is used to model the joint distribution of the nonlinear terms, which are expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm is then proposed to compute the Bayesian estimates of interest and perform Bayesian inference. This algorithm is equipped with a stochastic optimisation adaptation mechanism that automatically adjusts the parameters of the gamma Markov random field by maximum marginal likelihood estimation. Finally, the proposed methodology is demonstrated through a series of experiments with comparisons using synthetic and real data and with competing state-of-the-art approaches

    An Alternating Direction Algorithm for Matrix Completion with Nonnegative Factors

    Full text link
    This paper introduces an algorithm for the nonnegative matrix factorization-and-completion problem, which aims to find nonnegative low-rank matrices X and Y so that the product XY approximates a nonnegative data matrix M whose elements are partially known (to a certain accuracy). This problem aggregates two existing problems: (i) nonnegative matrix factorization where all entries of M are given, and (ii) low-rank matrix completion where nonnegativity is not required. By taking the advantages of both nonnegativity and low-rankness, one can generally obtain superior results than those of just using one of the two properties. We propose to solve the non-convex constrained least-squares problem using an algorithm based on the classic alternating direction augmented Lagrangian method. Preliminary convergence properties of the algorithm and numerical simulation results are presented. Compared to a recent algorithm for nonnegative matrix factorization, the proposed algorithm produces factorizations of similar quality using only about half of the matrix entries. On tasks of recovering incomplete grayscale and hyperspectral images, the proposed algorithm yields overall better qualities than those produced by two recent matrix-completion algorithms that do not exploit nonnegativity

    Topics in High-Dimensional Statistics and the Analysis of Large Hyperspectral Images.

    Full text link
    Advancement in imaging technology has made hyperspectral images gathered from remote sensing much more common. The high-dimensional nature of these large scale data coupled with wavelength and spatial dependency necessitates high-dimensional and efficient computation methods to address these issues while producing results that are concise and easy to understand. The thesis addresses these issues by examining high-dimensional methods in the context of hyperspectral image classification, unmixing and wavelength correlation estimation. Chapter 2 re-examines the sparse Bayesian learning (SBL) of linear models in a high-dimensional setting with sparse signal. The hard-thresholded version of the SBL estimator, under orthogonal design, achieves non-asymptotic error rate that is comparable to LASSO. We also establish in the chapter that with high-probability the estimator recovers the sparsity structure of the signal. The ability to recover sparsity structures in high dimensional settings is crucial for unmixing with high-dimensional libraries in the next chapter. In Chapter 3, the thesis investigates the application of SBL on the task of linear/bilinear unmixing and classification of hyperspectral images. The proposed model in this chapter uses latent Markov random fields to classify pixels and account for the spatial dependence between pixels. In the proposed model, the pixels belonging to the same group share the same mixture of pure endmembers. The task of unmixing and classification are performed simultaneously, but this method does not address wavelength dependence. Chapter 4 is a natural extension of the previous chapter that contains the framework to account for both spatial and wavelength dependence in the unmixing of hyperspectral images. The classification of the images are performed using approximate spectral clustering while the unmixing task is performed in tandem with sparse wavelength concentration matrix estimation.PHDStatisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135893/1/chye_1.pd

    EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing

    Get PDF
    Data acquired from multichannel sensors are a highly valuable asset to interpret the environment for a variety of remote sensing applications. However, low spatial resolution is a critical limitation for previous sensors, and the constituent materials of a scene can be mixed in different fractions due to their spatial interactions. Spectral unmixing is a technique that allows us to obtain the material spectral signatures and their fractions from hyperspectral data. In this paper, we propose a novel endmember extraction and hyperspectral unmixing scheme, so-called EndNet, that is based on a two-staged autoencoder network. This well-known structure is completely enhanced and restructured by introducing additional layers and a projection metric [i.e., spectral angle distance (SAD) instead of inner product] to achieve an optimum solution. Moreover, we present a novel loss function that is composed of a Kullback-Leibler divergence term with SAD similarity and additional penalty terms to improve the sparsity of the estimates. These modifications enable us to set the common properties of endmembers, such as nonlinearity and sparsity for autoencoder networks. Finally, due to the stochastic-gradient-based approach, the method is scalable for large-scale data and it can be accelerated on graphical processing units. To demonstrate the superiority of our proposed method, we conduct extensive experiments on several well-known data sets. The results confirm that the proposed method considerably improves the performance compared to the state-of-the-art techniques in the literature
    • 

    corecore