618 research outputs found

    Miniature photonic-crystal hydrophone optimized for ocean acoustics

    Full text link
    This work reports on an optical hydrophone that is insensitive to hydrostatic pressure, yet capable of measuring acoustic pressures as low as the background noise in the ocean in a frequency range of 1 Hz to 100 kHz. The miniature hydrophone consists of a Fabry-Perot interferometer made of a photonic-crystal reflector interrogated with a single-mode fiber, and is compatible with existing fiber-optic technologies. Three sensors with different acoustic power ranges placed within a sub-wavelength sized hydrophone head allow a high dynamic range in the excess of 160 dB with a low harmonic distortion of better than -30 dB. A method for suppressing cross coupling between sensors in the same hydrophone head is also proposed. A prototype was fabricated, assembled, and tested. The sensitivity was measured from 100 Hz to 100 kHz, demonstrating a minimum detectable pressure down to 12 {\mu}Pa (1-Hz noise bandwidth), a flatband wider than 10 kHz, and very low distortion

    Integration of electronic and optical techniques in the design and fabrication of pressure sensors

    Get PDF
    Since the introduction of micro-electro-mechanical systems fabrication methods, piezoresistive pressure sensors have become the more popular pressure transducers. They dominate pressure sensor commercialization due to their high performance, stability and repeatability. However, increasing demand for harsh environment sensing devices has made sensors based on Fabry-Perot interferometry the more promising optical pressure sensors due to their high degree of sensitivity, small size, high temperature performance, versatility, and improved immunity to environmental noise and interference. The work presented in this dissertation comprises the design, fabrication, and testing of sensors that fuse these two pressure sensing technologies into one integrated unit. A key innovation is introduction of a silicon diaphragm with a center rigid body (or boss), denoted as an embossed diaphragm, that acts as the sensing element for both the electronic and optical parts of the sensor. Physical principles of piezoresistivity and Fabry-Perot interferometry were applied in designing an integrated sensor and in determining analytic models for the respective electronic and optical outputs. Several test pressure sensors were produced and their performance was evaluated by collecting response and noise data. Diaphragm deflection under applied pressure was detected electronically using the principle of piezoresistivity and optically using Fabry-Perot interferometry. The electronic part of the sensor contained four p-type silicon piezoresistors that were set into the diaphragm. They were connected in a Wheatstone bridge configuration for detecting strain-dependent changes in resistance induced by diaphragm deflection. In the optical part of the sensor, an optical cavity was formed between the embossed surface of the diaphragm and the end face of a single mode optical fiber. An infrared laser operating at 1.55 was used for optical excitation. Deflection of the diaphragm, which causes the length of the optical cavity to change, was detected by Fabry-Perot interference in the reflected light. Data collected on several sensors fabricated for this dissertation were shown to validate the theoretical models. In particular, the principle of operation of a Fabry-Perot interferometer as a mechanism for pressure sensing was demonstrated. The physical characteristics and behavior of the embossed diaphragm facilitated the integration of the electronic and optical approaches because the embossed diaphragm remained flat under diaphragm deflection. Consequently, it made the electronic sensor respond more linearly to applied pressure. Further, it eliminated a fundamental deficiency of previous applications of Fabry-Perot methods, which suffered from non-parallelism between the two cavity surfaces (diaphragm and fiber), owing to diaphragm curvature after pressure was applied. It also permitted the sensor to be less sensitive to lateral misalignment during the fabrication process and considerably reduced back pressure, which otherwise reduced the sensitivity of the sensor. As an integrated sensor, it offered two independent outputs in one sensor and therefore the capability for measurements of: (a) static and dynamic pressures simultaneously, and (b) two different physical quantities such as temperature and pressure

    Optical Interferometric Force Sensor based on a Buckled Beam

    Get PDF
    This paper reports a novel extrinsic Fabry-Perot interferometer (EFPI)-based fiber optic sensor for force measurement. The prototype force sensor consists of two EFPIs mounted on a stainless-steel rectangular frame. The primary sensing element, i.e., the first EFPI, is formed between the endface of a horizontally placed optical fiber and a stainless-steel buckled beam. The second EFPI, fashioned between a longitudinally placed optical fiber and a silver-coated glass beam, is arranged to demonstrate the amplification mechanism of the buckled beam structure. When the sensor is subjected to a tension force, the pre-buckled beam will deflect backward, resulting in a longitudinal/axial displacement of the pre-buckled beam. The axial displacement is further transferred and amplified to a horizontal/vertical deflection at the middle of the buckled beam, leading to a relatively significant change in the Fabry-Perot cavity length. A force sensitivity of 796 nm/ {N} (change in cavity length/Newton) is achieved with a low-temperature dependence of 0.005 {N} /°C. The stability of the sensor is also investigated with a standard deviation of ± 5 nm, corresponding to a measurement resolution of ±0.0064 N. A simulation is conducted to study the axial displacement and stress distribution of the sensor when it is subjected to a tension load of 250 N. It is demonstrated that the maximum stress of the sensor is tremendously reduced attributed to the buckled design, enabling a long service life cycle of the force sensor. The robust and simple-to-manufacture force sensor has great potential in structural health monitoring, robotics control, and oil/ gas refining systems

    Index to NASA Tech Briefs, 1972

    Get PDF
    Abstracts of 1972 NASA Tech Briefs are presented. Four indexes are included: subject, personal author, originating center, and Tech Brief number

    A review of pzt patches applications in submerged systems

    Get PDF
    Submerged systems are found in many engineering, biological, and medicinal applications. For such systems, due to the particular environmental conditions and working medium, the research on the mechanical and structural properties at every scale (from macroscopic to nanoscopic), and the control of the system dynamics and induced effects become very difficult tasks. For such purposes in submerged systems, piezoelectric patches (PZTp), which are light, small and economic, have been proved to be a very good solution. PZTp have been recently used as sensors/actuators for applications such as modal analysis, active sound and vibration control, energy harvesting and atomic force microscopes in submerged systems. As a consequence, in these applications, newly developed transducers based on PZTp have become the most used ones, which has improved the state of the art and methods used in these fields. This review paper carefully analyzes and summarizes these applications particularized to submerged structures and shows the most relevant results and findings, which have been obtained thanks to the use of PZTp.Peer ReviewedPostprint (published version

    Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Full text link

    SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 6: Controls and guidance

    Get PDF
    Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft Integrated Technology Plan (ITP) on controls and guidance are included. Topics covered include: strategic avionics technology planning and bridging programs; avionics technology plan; vehicle health management; spacecraft guidance research; autonomous rendezvous and docking; autonomous landing; computational control; fiberoptic rotation sensors; precision instrument and telescope pointing; microsensors and microinstruments; micro guidance and control initiative; and earth-orbiting platforms controls-structures interaction

    Aeronautical engineering: A continuing bibliography with indexes (supplement 292)

    Get PDF
    This bibliography lists 675 reports, articles, and other documents recently introduced into the NASA scientific and technical information system database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Get PDF
    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces
    • …
    corecore